2,135 research outputs found
Analytical and numerical tools for vacuum systems
Modern particle accelerators have reached a level of sophistication which require a thorough analysis of all their sub-systems. Among the latter, the vacuum system is often a major contributor to the operating performance of a particle accelerator. The vacuum engineer has nowadays a large choice of computational schemes and tools for the correct analysis, design, and engineering of the vacuum system. This paper is a review of the different type of algorithms and methodologies which have been developed and employed in the field since the birth of vacuum technology. The different level of detail between simple back-of-the-envelope calculations and more complex numerical analysis is discussed by means of comparisons. The domain of applicability of each method is discussed, together with its pros and cons
Les Houches Guidebook to Monte Carlo Generators for Hadron Collider Physics
Recently the collider physics community has seen significant advances in the
formalisms and implementations of event generators. This review is a primer of
the methods commonly used for the simulation of high energy physics events at
particle colliders. We provide brief descriptions, references, and links to the
specific computer codes which implement the methods. The aim is to provide an
overview of the available tools, allowing the reader to ascertain which tool is
best for a particular application, but also making clear the limitations of
each tool.Comment: 49 pages Latex. Compiled by the Working Group on Quantum
ChromoDynamics and the Standard Model for the Workshop ``Physics at TeV
Colliders'', Les Houches, France, May 2003. To appear in the proceeding
Probing for Invisible Higgs Decays with Global Fits
We demonstrate by performing a global fit on Higgs signal strength data that
large invisible branching ratios Br_{inv} for a Standard Model (SM) Higgs
particle are currently consistent with the experimental hints of a scalar
resonance at the mass scale m_h ~ 124 GeV. For this mass scale, we find
Br_{inv} < 0.64 (95 % CL) from a global fit to individual channel signal
strengths supplied by ATLAS, CMS and the Tevatron collaborations. Novel tests
that can be used to improve the prospects of experimentally discovering the
existence of a Br_{inv} with future data are proposed. These tests are based on
the combination of all visible channel Higgs signal strengths, and allow us to
examine the required reduction in experimental and theoretical errors in this
data that would allow a more significantly bounded invisible branching ratio to
be experimentally supported. We examine in some detail how our conclusions and
method are affected when a scalar resonance at this mass scale has couplings
deviating from the SM ones.Comment: 32pp, 15 figures v2: JHEP version, ref added & comment added after
Eq.
Next-to-leading order jet distributions for Higgs boson production via weak-boson fusion
The weak-boson fusion process is expected to provide crucial information on
Higgs boson couplings at the Large Hadron Collider at CERN. The achievable
statistical accuracy demands comparison with next-to-leading order QCD
calculations, which are presented here in the form of a fully flexible parton
Monte Carlo program. QCD corrections are determined for jet distributions and
are shown to be modest, of order 5 to 10% in most cases, but reaching 30%
occasionally. Remaining scale uncertainties range from order 5% or less for
distributions to below +-2% for the Higgs boson cross section in typical
weak-boson fusion search regions.Comment: 19 pages, 8 figure
Robust LHC Higgs Search in Weak Boson Fusion
We demonstrate that an LHC Higgs search in weak boson fusion production with
subsequent decay to weak boson pairs is robust against extensions of the
Standard Model or MSSM involving a large number of Higgs doublets. We also show
that the transverse mass distribution provides unambiguous discrimination of a
continuum Higgs signal from the Standard Model.Comment: 12p, 2 figs., additional comments on backgrounds, version to appear
in PR
Observation of the Dynamic Beta Effect at CESR with CLEO
Using the silicon strip detector of the CLEO experiment operating at the
Cornell Electron-positron Storage Ring (CESR), we have observed that the
horizontal size of the luminous region decreases in the presence of the
beam-beam interaction from what is expected without the beam-beam interaction.
The dependence on the bunch current agrees with the prediction of the dynamic
beta effect. This is the first direct observation of the effect.Comment: 9 page uuencoded postscript file, postscritp file also available
through http://w4.lns.cornell.edu/public/CLNS, submitted to Phys. Rev.
Higgs decay to dark matter in low energy SUSY: is it detectable at the LHC ?
Due to the limited statistics so far accumulated in the Higgs boson search at
the LHC, the Higgs boson property has not yet been tightly constrained and it
is still allowed for the Higgs boson to decay invisibly to dark matter with a
sizable branching ratio. In this work, we examine the Higgs decay to neutralino
dark matter in low energy SUSY by considering three different models: the
minimal supersymmetric standard model (MSSM), the next-to-minimal
supersymmetric standard models (NMSSM) and the nearly minimal supersymmetric
standard model (nMSSM). Under current experimental constraints at 2-sigma level
(including the muon g-2 and the dark matter relic density), we scan over the
parameter space of each model. Then in the allowed parameter space we calculate
the branching ratio of the SM-like Higgs decay to neutralino dark matter and
examine its observability at the LHC by considering three production channels:
the weak boson fusion VV->h, the associated production with a Z-boson pp->hZ+X
or a pair of top quarks pp->htt_bar+X. We find that in the MSSM such a decay is
far below the detectable level; while in both the NMSSM and nMSSM the decay
branching ratio can be large enough to be observable at the LHC.Comment: Version in JHE
- …
