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Abstract 
Modern particle accelerators have reached a level of sophistication which 
require a thorough analysis of all their sub-systems. Among the latter, the 
vacuum system is often a major contributor to the operating performance of 
a particle accelerator. The vacuum engineer has nowadays a large choice of 
computational schemes and tools for the correct analysis, design, and 
engineering of the vacuum system. This paper is a review of the different 
type of algorithms and methodologies which have been developed and 
employed in the field since the birth of vacuum technology. The different 
level of detail between simple back-of-the-envelope calculations and more 
complex numerical analysis is discussed by means of comparisons. The 
domain of applicability of each method is discussed, together with its pros 
and cons. 

1 Introduction 
The vast majority of particle accelerators need low pressures in order to work efficiently and reduce 
beam losses and radiation background. Therefore in the following only the case of molecular flow 
conditions will be considered, i.e., when the interaction of residual gas molecules with each other is 
negligible, and the molecules are supposed to be hitting only the walls of the vacuum chamber. We 
will refer often in the following to this situation as ‘UHV conditions’. 

In general, for the calculation of pressure profiles and conductances, two different approaches 
are possible: analytical methods and numerical methods. The former are appealing, as they allow the 
calculation using formulae, a solution which eases the exploration of the space of different 
configurations of the vacuum system under study. For example, one could implement one or more 
formulae into a spreadsheet and then change some parameters such as the spacing of the pumps, their 
size, or the geometry of the chamber, until the specified design performance is reached. Unfortunately, 
there are no universal formulae which could be used. Only very simple geometries can be tackled 
analytically in a correct way, but a real life accelerator often departs from this case.  

The other approach, employing numerical methods, is more widespread, although this often 
makes use of existing formulae, derived analytically. One variant of the numerical approach, the 
Monte Carlo (MC) method, directly implements the formulae of the kinetic theory of gases, with no 
simplifications. Its major drawback is that it is CPU-intensive. 

With few exceptions, the vacuum systems of particle accelerators fall under the category of 
conductance limited systems. In order to clarify what this means, the basic concept of conductance is 
revisited, using both analytic tools and numerical ones.  

We then move on to review the different ways of solving the basic equations, mass-flow 
balance equations, which describe the behaviour of gases inside a vacuum system. Different ways of 
solving such equations are given, with particular emphasis on their applicability. 

A rather large body of literature has been used to cover all possible aspects of the subject. 
Several references are given throughout the text: they should be consulted carefully and critically and 
used as a guidance for the implementation of vacuum calculations. 

285

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by CERN Document Server

https://core.ac.uk/display/44182601?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


2 Conductance calculations 
Much has been written concerning the concept of conductance [1–3]. Alongside with the basic 
equation of UHV technology 

 QP
S

=  (1) 

it is one of the primary concepts through which many other interesting quantities can be calculated, 
such as the effective pumping speed and the average pressure.  

Conductance is defined as the ratio of throughput to pressure differential, under steady 
conditions, where the pressures refer to two isobaric sections inside the pumping system, as indicated 
in Fig. 1.  

 
Fig. 1: Experimental set-up for the measurement of the flow resistance (conductance) of a tube [4] 

In a less rigorous way, the conductance of a vacuum component is its capacity to let a volume 
of gas pass from one end to the other, regardless of the pressure differential. It is, basically, a function 
of the geometry of the system.  

2.1 Analytic calculations 

In one of the fundamental papers of vacuum technology [1], Knudsen wrote that the ‘flow 
resistance’ Z (1/conductance) of a tube of length L, cross-sectional area A, and perimeter S is given by 

 2
0

3 2 d
8

L SZ l
A

π= ∫   . (2) 

Smoluchovski and Clausing [2,3] realized that Knudsen’s formula was correct only in the 
particular case of a circular cross-section. In all other cases a correction factor had to be introduced, 
and the simple integral in Eq. (2) changed to the double integral 
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−

= ∫ ∫   . (3) 

Figure 2 (a) and 2 (b) show the definition of the variables. 
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(a) 

 
(b) 

Fig. 2: (a), (b) Definition of variables for the calculation of Smoluchovski’s integral [4] 

 

It was shown later that the double integral above can be replaced by [4] 

 )d(avg 2 zI ∫⋅= ρπ  . (4) 

As already pointed out by Clausing [2], for a tube of arbitrary shape it is better to use the 
concept of transmission probability Pi→j, i.e., the ratio of the molecules which reach the ‘exit’ j of the 
tube once they are injected through its ‘entrance’ i (whether or not i and j are the real entrance and exit 
of the tube). The relationship between the conductance C in litre · s–1 and Pi→j is given by (Ref. [5], 
p. 86)  

 i j4
vC A P→= ⋅ ⋅  . (5) 

where A is the entrance area in cm2, and v is the average molecular speed in m · s–1 given by  

 8 8kT RTv m Mπ π= =  (6) 

with k = Boltzmann’s constant (k = 1.381 · 10–23 J · K–1); m = molecular mass (kg); R = 8.314  
J · mole–1; M = molar weight (kg · mole–1). 
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The resolution of Eq. (3) becomes difficult as soon as the cross-section of the tube is not as 
simple as a circle, ellipse or rectangle. A typical vacuum system of an accelerator is a sequence of 
tubes with different cross-sections, connected together. In this case it would be tempting to think of 
the total conductance of the system as the one obtained using an electrical circuit analogy of the flow 
resistance mentioned above Ztot, where the resistance of each section of the tube having a given cross-
section is calculated separately assuming that it connects two separate volumes as shown in Fig. 1, and 
then the reciprocal of these are summed up in order to obtain 1/Ztot (Ref. [5], p. 96). This procedure 
would generate the wrong result, as it would not take into account the so-called beaming effect [2–4], 
which describes the fact that while the molecules move along the tube from the entrance to the exit, 
their average velocity vectors become more and more parallel to the axis of the tube. This had been 
recognized early on by Clausing [2], and re-visited later by several authors [4], as shown in Fig. 3. 

 
Fig. 3: Beaming effect for circular tubes of different length-to-radius ratios [4,6] 

As soon as computers became available for this kind of calculation, they were used to calculate 
the transmission probability of simple and complex geometries, referring to real vacuum components, 
such as tubes, elbows, baffles, pumps [7,8]. All that needs to be done is to simulate the microscopic 
behaviour of the molecules under UHV conditions, with the assumption that their direction of 
emission follows the cosine law, frequently referred to as Lambert’s law, i.e., that a molecule resting 
on a surface, has a probability dn/N of being desorbed within the solid angle dω = sinθ · dθ · dφ as 
shown in Fig. (4), and given by 

 1 d cos
d

n
N

θ
ω π

=   . (7) 
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Fig. 4: Definition of the zenith angle of emission θ following Lambert’s law. The azimuthal angle 
ϕ is a rotation about the axis perpendicular to the plane. 

2.2 The Monte Carlo method 

The Monte Carlo (MC) method has been used extensively for this purpose, as shown in Ref. [9] and 
Ref. [10] and references therein. The MC algorithm under UHV conditions, frequently called the 
Direct Simulation Monte Carlo method (DSMC) generates molecules one by one and tracks them 
from ‘source’ to ‘sink’ [11]. 

Figures 5 and 6 show examples of such calculations. 

 (a)                 (b) 
Fig. 5: (a) Geometry for the MC simulation of an elbow;  (b) its transmission probability [7] 
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Fig. 6: Transmission probability for circular tubes of length L and  radius R for different values of 
the sticking coefficient [8] 

This can be generalized to any cross-section, such as the one for LEP, as shown in Fig. 7 [12] 
and modelled in Fig. 8 [10]. 

 
      (a) 

 
(b) 

Fig. 7: (a) Cross-section of the dipole LEP chamber with NEG strip [12]; (b) Twenty-five mm 
long slice of the LEP chamber, with 20 × 9 mm2 racetrack-shaped slot between chamber and 
antechamber [10,12]. 
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Fig. 8: Definition of some geometrical variables used for making a 3D MC simulation [10] 

A three-dimensional (3D) description of the vacuum component is done. The easiest way is to 
make it up by using planar facets (polygons) as done in Refs. [10,11].  

In this case, the ray-tracing calculation goes as follows, see Fig. 8:  

– let XYZ be an arbitrary frame of reference; 

– let X''Y''Z'' be the frame of reference whose origin corresponds to the the position of the 
molecules on a facet, with Z'' perpendicular to the facet (normal vector); 

– let X'Y'Z' be a frame of reference parallel to X''Y''Z'', with the same origin as XYZ; 

– let β be the rotation angle about the Y axis which takes the X axis onto X', and α the one about 
X' which takes Z onto Z'. 

The following transformation equations can be written 

 
1 0 0
0 cos sin
0 sin cos

X X
Y Y
Z Z

α α
α α

′′ ′⎛ ⎞ ⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟ ⎜ ⎟′′ ′= ⋅⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎜ ⎟ ⎜ ⎟ ⎜ ⎟′′ ′−⎝ ⎠ ⎝ ⎠ ⎝ ⎠

  ,  (7a) 

 
cos 0 sin

0 1 0
sin 0 cos

X X
Y Y
Z Z

β β

β β

′′⎛ ⎞ ⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟ ⎜ ⎟′′= ⋅⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎜ ⎟ ⎜ ⎟ ⎜ ⎟′′−⎝ ⎠ ⎝ ⎠ ⎝ ⎠

  . (7b) 

A molecule at position (Xs, Ys, Zs) (‘source’) is generated with a desorption (zenith) angle θ 
following a cosine distribution with respect to Z'' (ϕ is the azimuthal angle of rotation about Z'', not 
shown on Fig. 8) according to the equations  

 
sin cos
sin sin
cos         

X L
Y L
Z L

θ ϕ
θ ϕ
θ

′′ =⎧
⎪ ′′ =⎨
⎪ ′′ =⎩

 . (8) 
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The angle θ is obtained by generating a random number r with uniform distribution in the 
interval [0,1], and then using the relation [13] 

 1sin ( )rθ −=   .  (9) 

The molecule will hit another facet at point (Xt, Yt, Zt) (‘target’) 

 
t s t s s s s s

t s t s s

t s t s s s s s

(sin cos cos sin sin sin sin cos cos sin )
(sin sin cos cos sin )

(sin cos sin sin sin sin cos cos cos cos )

X X L
Y Y L

Z Z L

θ ϕ β θ ϕ α β θ α β
θ ϕ α θ α

θ ϕ β θ ϕ α β θ α β

= + − −⎧
⎪ = + −⎨
⎪ = + + +⎩

  (10) 

with Lt given by  

 

t t s t s t s t

t s s s s s

t s s

t s s s s s

( )/
(sin cos cos sin sin sin sin cos cos sin )

(sin sin cos cos sin )
(sin cos sin sin sin sin cos cos cos cos )

L A X B Y C Z D U
U A

B
C

θ ϕ β θ ϕ α β θ α β
θ ϕ α θ α

θ ϕ β θ ϕ α β θ α β

= − + + +⎧
⎪ = − − +⎪
⎨ + − +⎪
⎪ + + +⎩

  . (11) 

With At, Bt, Ct and Dt the coefficients defining the plane AtX + BtY + CtZ + Dt = 0 which 
contains the polygon defining facet t. The MC code is such that it calculates Lt for each facet defining 
the model of the vacuum system except the source one, and then takes as the good Lt the one 
corresponding to the shortest positive Lt. It then repeats the procedure until a molecule is adsorbed by 
a surface: this is accomplished by assigning to each facet a sticking coefficient corresponding to the 
pumping speed of that facet. The sticking coefficient is the probability that a molecule hitting a facet 
will be permanently pumped. The relationship between sticking coefficient s and pumping speed S 
(l/s) of a facet is given by Eq. (12) 

 
4
vS s A= ⋅ ⋅   (12) 

which has the same form as Eq. (5), with the sticking coefficient s taking the place of the transmission 
probability Pi→j and the pumping speed S the place of the conductance C. A 1 cm2 surface with s = 1, 
i.e., a perfect pump, has a pumping speed S of 11.77 l/s/cm2 for N2 (or CO) at a temperature of 20°C.  

The transmission probability w follows a binomial distribution with a standard deviation 
(N = number of generated molecules) [10, 14,15] 

 (1 )w w
N

σ ⋅ −=   .  (13) 

The conductance C of a tube of any cross-section is obtained by calculating w using the DSMC 
method, and then inserting it in place of Pi→j into Eq. (5). The standard deviation of C follows 
immediately from  that of w. 

For a MC simulation to be effective, it is of paramount importance to use an appropriate random 
number generator (RNG). It must have a suitably large period, in order to avoid that the generated 
number be correlated, thus skewing the results. For some high-precision simulations, where billions of 
molecules need to be generated in order to reduce the statistical error, the RNGs can have periods as 
large as 219937~106000 [14,15]. 
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2.3 Comparisons 

References [4,5,9] can be used in order to check the relative accuracy of the different methods 
discussed so far. In general, for tubes of constant circular cross-section, most methods agree to a few 
per cent, with notable deviations when the length-to-radius ratio becomes small. For chambers with 
complicated cross-sections (chamber–antechamber, coaxial tubes, triangular or rectangular profiles) 
the deviations become more and more pronounced. See Section 3.9 for further comments on this. 

3 Pressure profile calculations 
After having reviewed the concept of conductance and some of the methods which can be used to 
calculate it for a system of given geometry, we can now move on to look at the different ways of 
calculating pressure profiles.  

Since most accelerators or accelerator components (e.g., beamlines) have one dimension which 
is much bigger than the two others (circumference or beamline length vs cross-section of the 
chamber), a good starting point is to consider a uni-dimensional mass-balance equation of the type 

 
2

2
d ( , ) d ( , )( , ) ( , ) ( , ) ( , )

d d
P x t P x tV Q x t S x t P x t c x t

t x
= − ⋅ + ⋅   (14) 

where V is the volume, P the pressure, Q the outgassing yield, S the pumping speed, and c the specific 
conductance in litres·m/s.  

Most particle accelerators run under conditions which can be thought of as a steady state: a 
given beam is injected into the machine, and then circulates in it for times that are normally much 
longer than the time taken by the molecules to move along the chamber and be pumped. As we have 
seen in Eq. (6), these average speeds are of the order of several hundred metres per second, and 
therefore any changes in the conditions of the machine (beam current and energy, beam position) 
which happen on a time scale longer than, say, a few seconds, can be considered as stationary from the 
point of view of pressure. The time evolution of the pressure can therefore be neglected, thus 
simplifying the analysis. Equation (14) then becomes 

 
2

2
d ( )( ) ( ) ( ) ( )

d
P xc x S x P x Q x
x

⋅ − ⋅ = −  .  (15) 

In the literature, it is solutions to this equation that are found most often. Some of them are 
obtained analytically, others numerically.  

Looking at Eq. (15) it becomes clear now why we have discussed the conductance before 
coming to this point. Together with the pumping speed, it is the conductance which determines the 
shape of P(x). We will see that S could in principle be made very large (at least locally), while c has an 
upper bound due to the physical dimension of the accelerator, mainly the physical aperture of the 
magnets. This fact is often referred to by saying that accelerators are conductance-limited systems. 

3.1 Analytic solutions 

When c and S are constants, a solution can easily be obtained by integrating the second-order 
differential equation (15).  

The simplest model to start with is the one represented by a vacuum chamber of constant cross 
section, with a uniform outgassing yield q (in mbar · l/s/cm2), a number of lumped pumps equally 
spaced L metres apart, and no distributed pumping. It can be thought of as a periodic system, with 
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period equal to the spacing of the pumps. Let A be the specific surface of the vacuum chamber A, in 
cm2/m, as indicated by the example shown in Fig. 9.  

 
2

2
d ( )

d
P xc Aq
x

= −   . (16) 

 
Fig. 9: Pressure profile for a periodic system 

By symmetry, the boundary conditions are  

 
d ( /2) 0
d
( 0) /

P x L
x

P x AqL S

⎧ = =⎪
⎨
⎪ = =⎩

  . (17) 

The solution is 

 2( ) ( )
2
Aq AqLP x Lx x

c S
= − +   .  (18) 

The average and the maximum pressures, which can be relevant for the operation of the 
accelerator, are given by 

 
avg

0 eff

max

1 1 1( )d ( ) ( )
12

1( )
8

L LP P x x AqL AqL
L c S S

LP AqL
c S

⎧
= = + =⎪⎪

⎨
⎪ = +⎪⎩

∫
  ,  (19) 
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with Seff, the effective pumping speed, given by 

 1
eff

1( )
12

LS
c S

−= +   .  (20) 

It now becomes evident why accelerators are said to be conductance-limited systems. There is 
no point in increasing the pumping speed S beyond few times c/L, since even for a very large S the 
effective pumping speed would be limited to 12 ⋅ c/L, as indicated in Fig. 10.  

 
Fig. 10: Effective pumping speed vs pump spacing, for selected values of the specific conductance 

As an example, let us consider the case of the ESRF: at a nominal beam current I = 200 mA, 
and energy E = 6 GeV, the total photon flux F is  

 .)ph/s(1008.8 17 IEF ⋅⋅⋅=   (21) 

For a well-conditioned system, a value of the photodesorption yield η of 10–6 mol/photon can be 
reasonably assumed [16], which gives a total outgassing rate of Q = F · η · k, where k = 4.047 ×          
× 10–20 mbar · l/molecule, or Q = 3.53 · 10–5 mbar · l/s. Using Eq. (1), we obtain S as a function of Q 
and P, the measured average pressure. For the ESRF, a typical average pressure during operation is 
1.5 · 10–9 mbar, which yields S = 3.53 · 10–5/1.5 · 10–9 ≈ 23 500 l/s. This would be the total pumping 
speed to install along the storage ring were not the system conductance limited. The real installed 
pumping speed, on the other hand, is  ~ 4700 l/s per standard cell. Since there are 32 cells in the 
ESRF, the total goes to ~ 150 000 l/s, or ~ 6.5 times the value calculated by using Eq. (1). 

If either c, Q, S, or L are not constant, then ‘piece-wise’ solutions can be found [16]. In this case 
the pressure profile looks like a series of parabolae. It should be kept in mind that this solution is only 
approximate, since it does not take into account the effect of the changes of the cross sections. 

If the distributed pumping speed is not zero throughout the system, then Eq. (15) becomes 
(Aq = Q, specific gas load in mbar · l/s/m) 
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2

2
d ( ) 0

d
P xc Q SP
x

+ − =   .  (22) 

Its solution is given by  

 ( ) QP x Ae Be
S

α α−= + +   (23) 

where α = S/c. The solution is of an hyperbolic sine/cosine type. The boundary conditions between 
areas with distributed pumping and areas with lumped pumping, or no pumping at all, are given by the 
continuity of P(x) and its first derivative dP/dx at the boundaries. If the vacuum chamber is ‘sliced’ 
into N sections, and each section has its own ci, Qi, Si and Pi, then the boundary conditions give 2N 
equations with 2N unknowns, which can be solved.  

As an example, taken from Ref. [16], the pressure profile along one cell of a particle 
accelerator, calculated using this method, is shown in Fig. 11.  

 
Fig. 11: Pressure profile along one cell of Diamond [16] 

3.2 Transfer-matrix method 

Under the assumption that c, S and Q are piece-wise constants, Eq. (22) and its solution Eq. (23) can 
be solved by using algorithms which are implemented in machine lattice codes such as 
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TRANSPORT [17], where the particle beam is tracked through the magnetic lattice. In this case, a 
corresponding ‘vacuum lattice’ is thought of [18,19], which obeys equations of the type 

 

2

0

0

sinh( ) cosh( ) 1cosh( )
( )

sinh( )d ( ) d sinh( ) cosh( ) d d
1 10 0 1

L q LL
cP L P

q LP L z L L P z
c

α αα
α α

αα α α
α

−⎛ ⎞−⎜ ⎟
⎜ ⎟⎛ ⎞ ⎛ ⎞

⎜ ⎟ ⎜ ⎟⎜ ⎟= − ⋅⎜ ⎟ ⎜ ⎟⎜ ⎟
⎜ ⎟ ⎜ ⎟⎜ ⎟⎝ ⎠ ⎝ ⎠⎜ ⎟

⎜ ⎟
⎝ ⎠

  (24) 

with c, s and α as defined above. This equation maps the initial pressure and gradient, P0 and dP0/dx, 
to their values after a length z = L. 

An example is shown in Fig. 12, taken from Ref. [18]. 

 
Fig. 12: Pressure profile and its gradient calculated with VAKTRAK [18] 

A similar approach has been used in Ref. [20], where Eq. (22) is re-written as  

 d d( ) 0
d d

Pc SP Q
x x

− + =  .  (25) 

In this case c, S and Q can vary. A solving technique based on the finite-difference method is 
used, after discretization of the system (slicing) into N parts 

 i 1 i 1 i 1 i i 1 i 1 i 1 i 1 i i
i 2 2

( ) ( ) ( 2 )d d( )
d d 2 2

c c P c c P c c c PPc
x x x x

+ − + − − + −− + − − += −
Δ Δ

  .  (26) 

This, together with the boundary conditions 
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 i 1 i 1
i i 22

P PQ c
x

+ −−= −
Δ

  (27) 

becomes a tri-diagonal matrix which is multiplied by the pressure vector Pi. A solution can be found 
by employing, for instance, a Gaussian elimination and back-substitution technique, an example of 
which is shown in Fig. 13. 

 
Fig. 13: Pressure profile along FNAL’s Recycler Ring [21] 

3.3 The continuity principle of gas flow 

Another way of solving the mass-flow balance equation is the so-called Continuity Principle of Gas 
Flow (CpoGF), which can be stated after discretization of the vacuum system as per Fig. 14. 

 
Fig. 14: The continuity principle of gas flow [22] 
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Each segment of the vacuum system is assigned its Si, Qi and Ci, and then its pressure Pi is 
obtained by solving the set of equations 

 i i 1 i i 1 i 1 i i i i( ) ( )c P P c P P Q S P− + +− + − + =   .  (28) 

Several types of boundary conditions (BC) can be thought of [22]: 

– Periodic BC: 

 0 n

n 1 0

P P
P P+

=⎧
⎨ =⎩

  (29) 

which introduced into Eq. (28) gives 

 
1 n 1 2 2 1 1 1 1

i i 1 i i 1 i 1 i i i i

n n 1 n1 1 1 n n n n

( ) ( )
( ) ( )
( ) ( )

C P P C P P Q S P
C P P C P P Q S P
C P P C P P Q S P

− + +

−

− + − + =⎧
⎪ − + − + =⎨
⎪ − + − + =⎩

  (30) 

where i = 2, 3, … (n – 1). 

– Smooth BC: 

 0 1

n 1 n

 P P
P P+

=⎧
⎨ =⎩

  (31) 

which introduced into Eq. (28) gives 

 
2 2 1 1 1 1

i i 1 i i 1 i 1 i i i i

n n 1 n1 n n n

( )
( ) ( )

( )

C P P Q S P
C P P C P P Q S P

C P P Q S P
− + +

−

− + =⎧
⎪ − + − + =⎨
⎪ − + =⎩

  (32) 

where i = 2, 3, … (n – 1). 

– Fixed-pressure BC: 

When P0 and Pn are known (or set to a given value), Eq. (28) becomes 

 
1 1 2 2 1 1 1 0 1 1

i i 1 i i 1 i 1 i i i i

n n 1 n1 1 n n 1 n 1 n n n

( ) ( )
( ) ( )

( ) ( )

C P C P P Q C P S P
C P P C P P Q S P

C P P C P C P Q S P
− + +

− + +

− + − + + =⎧
⎪ − + − + =⎨
⎪ − − + + =⎩

  (33) 

where i = 2, 3, … (n – 1). 

The 3 BC cases can be solved by a forward substitution and chase-back technique [22], to 
obtain the pressure profile of Fig. 15. 
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Fig. 15: The CPoGF algorithm applied to the interaction region of CESR-III – CLEO-III. 
IP = Interaction Point; TiSP = Titanium Sublimation Pump [22] 

3.3.1 Commercial programs 

Commercial programs have been used by some authors to calculate vacuum pressure distributions: 
examples are the use of MathCad, for analysing the pressure inside a RF waveguide [23–25]. 

3.4 Time-dependent analytic calculations 

It may be interesting to calculate time-dependent pressure profiles, such as when the effect of gas 
leaks or a sudden air in-rush need to be calculated. One possible way of solving the problem is to start 
with the equation [26] 

 
2

2
( , ) ( , )( , )P x t P x tc q x t v

tx
∂ ∂= − +

∂∂
  (34) 

where v is the specific volume (volume per unit length of the system), and q the specific outgassing 
yield.  

As an example let us consider the case of  Ref. [26], depicted in Fig. 16: 

 
Fig. 16: Tube of length L pumped at the extremities, with a pulsed localized leak qi in the middle 
of it, and one high-vacuum pump (HVP) at each end [26] 
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If the localized pulsed leak qi is described by the equation i ( , ) ( ) ( )q x t q x tδ δ′= , then Eq. (34) 
can be solved analytically as 

 2 2T 1( , ) ( ) exp( )
2 2 4 44

Qq L q vP x t x x
c S c ctcvtπ

′
= − + + + −   .  (35) 

Where the first part of the equation is the parabolic pressure profile due to a spatially uniform 
outgassing yield q [similar to Eq. (18)], and the second part comes from the gas burst q'. With 
reference to the geometry of Fig. 16, the solution to this equation is shown in Fig. 17. 

 
Fig. 17: Solution to Eq. (35) when L = 400 cm, q' = 0.01 mbar · l, q = 4.7 · 10–8 mbar · l/s/cm [26] 

3.5 The Monte Carlo method 

We have already introduced in Section 2 the main features of the MC method, for the calculation of 
transmission probabilities. There is not much else that needs to be done to use this method for 
calculating pressure profiles. A geometrical description (model) of the system is made, and then the 
MC simulation program is started. We have seen that for the calculation of transmission probabilities 
the molecules are made to desorb from one end of the system, usually a tubular geometry, and the 
program tracks all molecular trajectories and computes the fraction of the molecules which reach the 
other end. For the pressure profile calculation, for an accelerator the source of gas is, more often than 
not, distributed along the chamber in ways that depend on many factors, such as the type of accelerator 
(synchrotron radiation (SR) light source, high-energy hadron machine, linac, etc.), and the particular 
situation or mode of operation (fixed energy vs ramped, pulsed machine, gas leak, etc.).  

Therefore, it is a pre-requisite to the MC calculation to calculate the desorption profile along the 
chambers. It should be clear that the accuracy of the result will then depend not only on the statistical 
accuracy of the MC algorithm, but also on the accuracy of the estimation of the desorption profile. As 
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an example, for a SR light source one could be tempted, as a first approximation, to set the desorption 
profile proportional to the photon flux of Eq. (21). This would not take into account the fact that it is 
not only the instantaneous photon flux which matters, but the integrated photon flux Dγ as well, i.e., 
how many photons have hit a particular region of the chamber in the past. The instantaneous photon 
flux F at each point of the vacuum chamber needs to be multiplied by the correct photodesorption 
yield η, which is a function of Dγ [16]. The calculation of F can be accomplished by performing a ray-
tracing analysis, or by using some analytic formulae [27]. Clearly, this needs to be done in close 
relationship with machine-physics experts, who can advise on the orbit trajectories and properties 
(emittances, beta functions, dispersion, etc.) [28]. The coefficient η can be obtained by measurement, 
or extrapolated from data in the literature [16]. 

Let us now go back to the MC calculation of pressure profiles. All programs which have been 
written so far [7–12] work on the common principle of tracking a large number of molecules and 
keeping a record of all molecular hits on the surfaces making up the model of the vacuum system 
under study. The advantage of this method as compared to those discussed previously, is that it does 
not need the prior computation of the conductances or effective pumping speeds. In fact, it will 
calculate these quantities as a by-product of the calculation of the pressure profiles. 

One example will clarify this point. Figure 18 (a) shows the 3D model made with Molflow of a 
side pumping-port which is located on the dipole chambers of the ESRF. Each chamber has two such 
pumping ports which stick out of the magnet yoke, between the magnet coils. There is first a narrow 
rectangular box which is welded on one side to a conical taper that goes into a CF63 flange, where one 
pump is connected. Both the rectangular box and the conical taper have some internal reinforcing ribs 
in order to prevent collapse due to external pressure. On the opposite side, near the dipole chamber, 
there are five rectangular slots machined onto a thick stainless steel bar which constitutes the 
backbone of the dipole chamber. One pumping port has a 60 l/s ion-pump installed on it, the other one 
a 200 l/s NEG pump. The MC calculation is done in order to find the conductance of each pumping 
port, which then yields the effective pumping speeds at the beam chamber. It also gives the pressure 
drop between the beam chamber and the pumps’ inlets. Figure 18 (b) shows this pressure profile (solid 
line). The circular facet in A, the pump inlet, has a sticking coefficient of 1 (ideal pump), which 
corresponds to an installed pumping speed of 914 l/s [Eq. (12) for 20ºC CO gas]. The pressure profile 
is calculated for a unitary outgassing yield: the reciprocal of the vertical scale is therefore the effective 
pumping speed at the corresponding point on the horizontal axis, via the relation S = Q/P derived from 
Eq. (1). This means that the effective pumping speed at point B is 1/0.0053 = 188.7 l/s. The pressure at 
the pump inlet A derived from the graph is 1/0.0004 = 2500 l/s, while it should be 1/914 = 0.00109: 
the discrepancy is due to the fact that the pressure under molecular flow conditions is not isotropic [9], 
it depends on the direction of measurement. Figure 19 shows the angular distribution of incident 
angles at the circular section between the taper and the pump inlet, 53 mm in front of the pump inlet 
circle. The large departure from the cosine-like distribution is evident. The transparent facet A–B is 
perpendicular to the average flow of molecules from C–D. The circular facet in A, the one that 
simulates the 914 l/s pump inlet, gives the correct value for the pumping speed, since it has a pressure 
of 0.001094 after 1 990 000 molecules have been generated.  

One advantage of the MC method is the possibility of changing the microscopic properties of, 
for instance, the vacuum surfaces [29], and seeing what impact this has on the pressure profile or 
transmission probability of the system. It allows the exploration of ‘what if’ scenarios, such as finding 
out what changes would take place if the theoretical cosine-like desorption from vacuum surfaces 
were replaced by another angular distribution. Or, it can be used to simulate the desorption from a 
facet which takes the place of the exit of a tubular structure (like a gas injection manifold, for 
instance): in this case, the desorption from the facet takes a cosn θ power law, in order to simulate the 
beaming profile, with the power exponent n extrapolated from data such as those in Fig. 3 or Fig. 19. 
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      (a) 

 
      (b) 

Fig. 18: (a) Molflow model of one ESRF dipole pumping port; Point A = pump’s inlet; B = beam 
chamber. Molecules are generated along the beam chamber C–D. The rectangular facet A–B is a 
transparent facet used to keep track of the molecular hits (small dots). (b) Solid line: pressure profile 
along the pumping port, from A to B, Z scale; Dashed line: pressure profile along the beam chamber, 
from C to D, X scale. 

 
Fig. 19: Angle of incidence profile (solid line) compared to a cosine-like (dashed line). The 0° line 
is the normal vector to the pump inlet. The beaming effect is evident. 
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3.5.1 Time-dependent DSMC 

There may be interest in simulating the time-dependent behaviour of gas species under UHV 
conditions. One way to do this is to follow the example set in Ref. [30]. The lengths of the molecular 
trajectories are translated into time intervals by means of the average molecular velocity given in 
Eq. (6). A suitable trajectory length step L0 is chosen, corresponding to a time-step of 0 0/L vτ = . A 
large number of molecules are generated, to get statistical accuracy, and the position of the molecules 
at each time-step interval is recorded. Figures 20 (a) and 20 (b) exemplify this with clarity. 

 
Fig. 20: Time-dependent MC simulation of an acoustic delay line (ADL) [30]; (a): geometry and 
dimensions of the ADL; (b): time-dependent pressure profiles 
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3.5.2 Commercial products 

Instead of coding the MC ray-tracing algorithm using some high-level languages (Fortran, C, Pascal) 
[10–12], some authors have left the burden of making the 3D model and the ray-tracing calculations to 
some commercial programs [25]. In this case, one or more script files have to be created, and then the 
symbolic processor computational engine takes charge of tracking the molecular trajectories, storing 
the data, and post-processing them in order to visualize the results. The obvious advantage is that the 
user does not need to write hundreds of lines of code, the disadvantage is that the software licence can 
be expensive and the training time to become proficient in using the software can be long.  

3.6 Diffusion equation 

Several authors [31–33] have used the diffusion equation method in order to calculate both steady-
state and time-dependent pressure profiles. The uni-dimensional diffusion equation is of the type [5,9] 

 
2

2
d
d
n nD
t x

∂=
∂

  (36) 

where D is the diffusion coefficient of the gas specie under study, where n, the molecular density has 
been used instead of the pressure P. The equation P = nkT gives the relationship between these two 
quantities. The diffusion coefficient D is related to the average molecular velocity and to the mean free 
path λ through the relationship 1/3D v λ= ⋅ ⋅ . Some interesting papers and analyses of vacuum 
systems of particle accelerators have been made using this method [31–33]. It is useful when the 
system under study can be thought of as being uni-dimensional. This means that the details of the 
pressure or density distributions at points where the local geometry of the system is important, cannot 
be obtained by this method. An example of this could be the geometry of a pumping port, or the side 
connection of a vacuum gauge to a vacuum chamber. Once solved, Eq. (36) could give the value of P 
or n at any given point in space and time (x,t), but the relationship between this and the pressure value 
read on a gauge attached to the chamber via a ‘tee’ or an elbow would need to be calculated 
separately, for instance using a MC algorithm. 

3.7 Gas dynamics models 

It is beyond the scope of this paper, which deals mainly with the case of molecular flows, to discuss 
the application of gas dynamics methods, which are more suited to describing the flow of gases at 
small Knudsen numbers. Since a dedicated lecture at this school has covered the subject (see 
F. Sharipov’s lecture), it is just worth while to say that the integro-differential kinetic equation method 
(Ref. [34] and references therein) could certainly model a vacuum system under UHV conditions. 

3.8 The view-factor (VF) or angular coefficients method 

It has been realized that there is a mathematical analogy between the laws of molecular flow in 
systems with surfaces which desorb diffusively (cosine-like) and the radiative exchange of heat 
between walls at given temperatures [9,16].  

For two sufficiently small surfaces, as depicted in Fig. 21 the following relation can be written 
for the molecular flux incident on any surface i  

 
n

inc i j j
j 1

( )ν ϕ ν→
=

= ⋅∑   (37) 

which leads to the system of algebraic equations 
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n

i 0i i i j j 0i i inc
j 1

(1 ) ( ) (1 )ν ν ε ϕ ν ν ε ν→
=

= + − ⋅ ⋅ = + − ⋅∑  .  (38) 

The coefficients εi are taken as sticking probabilities. The ϕi→j are the angular coefficients and  

 
n

ads i i j j
j 1

( )ν ε ϕ ν→
=

= ⋅ ⋅∑   (39) 

is the adsorbed flux. 

 
Fig. 21: Basis of the view-factor (VF) method 

As an example, Fig. 22 shows the comparison of the calculation of the ratio of the pressure at 
the inlet and outlet of a tube of  length L = 500 mm and diameter 35 mm, obtained by applying two 
different methods: the CpoGF method and the VF method.  

 
Fig. 22: Comparison between a uni-dimensional analytic method and the VF method [35] 

The VF method gives the correct answer, the one that matches the measurements, while the 
CPoGF method greatly overestimates the pressure ratio at the two ends. This is due to the fact that the 
latter misses the beaming effect of the molecular flow inside the tube. The two methods agree to some 
extent only when very small values of the sticking coefficient of the wall are valid, of the order of a 
few per cent [35]. 
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3.8.1 Commercial programs 

Figure 22 has been obtained by applying a proprietary code which implements Eqs. (37–39). Other 
authors have used some commercial programs which implement the finite-element method (FEM), 
such as ANSYS, in order to integrate the vacuum and the mechanical calculations all within the same 
working space [35–37]. In this case, the analogy between radiative heat exchange and molecular flow 
is such that pressure P is equivalent to the radiation temperature T4, and the gas flow Q to the radiation 
heat flow q, through the transformations [36] 

 
4

2
P R T
k MT

Q q

σ
π

⎧
⇐⎪

⎨
⎪ ⇐⎩

  .  (40) 

A pump is simulated by transforming the pumping speed S of a pump of area Ap into the 
‘emissivity’ εp of the surface simulating the pump 

 p
p 2

S R
A MT

ε
π

⇐   .  (41) 

The gas conductance in l/s has its counterpart in the thermal conductance in W/°C. 

 

 
Fig. 23: (a) Geometry of the vacuum system; (b) Pressure profile calculated with ANSYS [37] 

(a) 

(b) 
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Fig. 24: Molflow model of the vacuum system of Fig. 23. Only ½ of the system has been 
modelled, using the mirror symmetry along the YZ plane. The molecules hitting this plane are 
mirror reflected rather than being reflected diffusively [10]; Pressure profiles calculated with 
Molflow: solid line = along the 500 cm long tubes; dotted line = along the 100 cm long vertical 
branch. 

Figure 23 shows an example taken from Ref. [37] where the pressure profile along two circular 
tubes of different diameter connected in series, with a ‘tee’ along one of the two and two ion-pumps 
has been calculated using ANSYS. For comparison, Fig. 24 shows a DSMC calculation done with 
Molflow on the same system. 

3.9 Specific conductance calculation  

After reviewing many of the different ways to calculate vacuum pressures and other relevant 
quantities, we come back to the subject of the calculation of the specific conductance of the vacuum 
chamber of particle accelerators. As mentioned before, the choice of the cross-section of the vacuum 
chamber is a very important parameter, which could affect the dimension and field quality of the 

R. KERSEVAN

308



magnets, the physical aperture of the beam, the beam lifetime, and so on. We have seen that analytic 
formulae have been developed, together with numerical methods. We propose here to bridge the two 
fields, by proposing to determine the specific conductance c by using a DSMC calculation and relating 
it to one analytical model of the pressure profile, the parabolic pressure profile. Let us consider a tube 
of constant cross-section, with uniform outgassing rate from the walls, pumped at the two ends by two 
equal pumps. The DSMC model will transform the pumping speeds at the ends into sticking 
coefficients, as per Eq. (12). The pressure profile obtained by the DSMC method will look like a 
parabolic one, with a maximum in the middle, and minima at either end, as indicated by Eq. (18). A 
second-order polynomial fit of the pressure profile will be of the type  

 2
1 2 3( )P x A x A x A′ = + +   .  (42) 

Therefore,  

 

1
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2
2

3
3

22
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⎧⎧ ′ =⎪= −⎪ ⎪⎪ ⎪⎪ ⎪ ′′= → =⎨ ⎨
⎪ ⎪
⎪ ⎪= ′ =⎪ ⎪⎩ ⎪⎩

  ,  (43) 

where c', c'', and S' are fitted estimates of c and S. 

The following example will show how, for the same cross-sections, estimates of c varying by 
more than 25% can be obtained, depending on the choice of the method. Figure 25 (a) shows the 
cross-section of a chamber (pseudo-elliptical part) with an antechamber, similar to what has been used 
for the Advanced Photon Source synchrotron radiation light source [10]. It is approximately 28 cm in 
width, and 100 cm long, with a narrow slot of 1 cm height and 12.5 cm width. Molflow has been used 
to perform two DSMC calculations of the system. 

– The first one to calculate the transmission probability, i.e., molecules are generated at the 
entrance on the plane Z = 0 and tracked till the exit at Z = 100 cm. Both the entrance and exit 
facets have a unitary sticking coefficient. 

– The second one to calculate the pressure profile when all the side-walls are uniformly 
desorbing. In this case the pressure profile turns out to be parabolic, and it can be fitted to a 
second-order polynomial. In this case the ‘test facet’ which keeps record of all molecular hits 
used to make up the pressure profile can be chosen in different ways. In this case there are four 
different types: 1) along the beam chamber (points 43–46); 2) along the antechamber (points 
39–42); 3) along the slot (not shown, it lies between the first two); 4) across, i.e., over the whole 
width of the chamber (i.e., the rectangle identified by points 43, 44, 41, 42). Case no. 3 is a sort 
of average across the chamber. 

The calculation has also been performed using Knudsen’s Eq. (2). 

Note the large discrepancy between the value of c obtained by the transmission probability and 
parabolic fit methods, although they are both based on the same DSMC code. This should come as no 
surprise, as the former assumes molecular effusion (i.e., cosθ-like with respect to the axis parallel to Z) 
and therefore there is a non-negligible probability for molecules of travelling straight through the 1 m 
long chamber, while the latter assumed cosθ desorption from the walls, i.e., perpendicular to the 
longitudinal Z axis of the chamber. 
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In light of this result, it is suggested to use the DSMC method with a parabolic fit to the 
pressure profile curve. 

 
      (a) 

 
      (b) 

Fig. 25: (a) Molflow model of the chamber; (b) Parabolic pressure profiles calculated with 
Molflow. Note the large discrepancy between the value of c obtained by the transmission 
probability and parabolic fit methods, although they are both based on the same DSMC code. 

4 Realistic gas compositions 
In the previous sections, we have always made the implicit assumption that there was only one gas 
species inside the vacuum system. As is well known, this is never the case. Under UHV conditions, it 
is possible to assume, to a good degree of accuracy, that the total pressure is the sum of the partial 
pressures [19, 32, 33], which can be calculated as shown before. It is basically Eq. (6) which tells us 
how the various quantities of interest—pressure, conductance, molecular density and so on—will 
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change. Lighter gas species will have a higher conductance, all other parameters being the same, as 
will hotter gas species, through the MT  relationship. 

5 Conclusions 
In the previous sections, it has been shown that the recent literature is full of examples of pressure 
calculations performed by using a number of codes and methods, both analytical and numerical. It is 
left to the reader to make the appropriate choice for the calculation of pressure profiles and related 
vacuum quantities. 

Many examples have been given, trying to point out the strengths and the weaknesses of each 
method. 

Suggestions have been given about the rational choice for the calculation of the specific 
conductance of the vacuum chamber of particle accelerators. 
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