862 research outputs found

    A comparison of estimators for the two-point correlation function

    Full text link
    Nine of the most important estimators known for the two-point correlation function are compared using a predetermined, rigorous criterion. The indicators were extracted from over 500 subsamples of the Virgo Hubble Volume simulation cluster catalog. The ``real'' correlation function was determined from the full survey in a 3000Mpc/h periodic cube. The estimators were ranked by the cumulative probability of returning a value within a certain tolerance of the real correlation function. This criterion takes into account bias and variance, and it is independent of the possibly non-Gaussian nature of the error statistics. As a result for astrophysical applications a clear recommendation has emerged: the Landy & Szalay (1993) estimator, in its original or grid version Szapudi & Szalay (1998), are preferred in comparison to the other indicators examined, with a performance almost indistinguishable from the Hamilton (1993) estimator.Comment: aastex, 10 pages, 1 table, 1 figure, revised version, accepted in ApJ

    Morphological fluctuations of large-scale structure: the PSCz survey

    Get PDF
    In a follow-up study to a previous analysis of the IRAS 1.2Jy catalogue, we quantify the morphological fluctuations in the PSCz survey. We use a variety of measures, among them the family of scalar Minkowski functionals. We confirm the existence of significant fluctuations that are discernible in volume-limited samples out to 200Mpc/h. In contrast to earlier findings, comparisons with cosmological N-body simulations reveal that the observed fluctuations roughly agree with the cosmic variance found in corresponding mock samples. While two-point measures, e.g. the variance of count-in-cells, fluctuate only mildly, the fluctuations in the morphology on large scales indicate the presence of coherent structures that are at least as large as the sample

    Backreaction in Late-Time Cosmology

    Get PDF
    We review the effect of the formation of nonlinear structures on the expansion rate, spatial curvature, and light propagation in the universe, focusing on the possibility that this effect could explain cosmological observations without requiring the introduction of dark energy or modified gravity. We concentrate on explaining the relevant physics and highlighting open questions.Peer reviewe

    Dark Energy from structure: a status report

    Full text link
    The effective evolution of an inhomogeneous universe model in any theory of gravitation may be described in terms of spatially averaged variables. In Einstein's theory, restricting attention to scalar variables, this evolution can be modeled by solutions of a set of Friedmann equations for an effective volume scale factor, with matter and backreaction source terms. The latter can be represented by an effective scalar field (`morphon field') modeling Dark Energy. The present work provides an overview over the Dark Energy debate in connection with the impact of inhomogeneities, and formulates strategies for a comprehensive quantitative evaluation of backreaction effects both in theoretical and observational cosmology. We recall the basic steps of a description of backreaction effects in relativistic cosmology that lead to refurnishing the standard cosmological equations, but also lay down a number of challenges and unresolved issues in connection with their observational interpretation. The present status of this subject is intermediate: we have a good qualitative understanding of backreaction effects pointing to a global instability of the standard model of cosmology; exact solutions and perturbative results modeling this instability lie in the right sector to explain Dark Energy from inhomogeneities. It is fair to say that, even if backreaction effects turn out to be less important than anticipated by some researchers, the concordance high-precision cosmology, the architecture of current N-body simulations, as well as standard perturbative approaches may all fall short in correctly describing the Late Universe.Comment: Invited Review for a special Gen. Rel. Grav. issue on Dark Energy, 59 pages, 2 figures; matches published versio

    On the abundance of collapsed objects

    Full text link
    The redshift dependence of the abundance of collapsed objects places strong constraints on cosmological models of structure formation. We apply a recently proposed model describing the anisotropic collapse of inhomogeneous spatial domains. Compared with the spherical top-hat model, this generic model leads to significantly more collapsed objects at high redshifts: at redshift one and on the scale of rich clusters a factor of 65. Furthermore, for a fixed normalization of the initial fluctuation spectrum (\sigma_8=1), we predict four times as much presently collapsed objects on the mass-scale of rich clusters within the standard CDM cosmogony, compared to the spherical collapse.Comment: 4 pages, 2 figures, revised version accepted in the ApJ

    Can we detect Hot or Cold spots in the CMB with Minkowski Functionals?

    Full text link
    In this paper, we investigate the utility of Minkowski Functionals as a probe of cold/hot disk-like structures in the CMB. In order to construct an accurate estimator, we resolve a long-standing issue with the use of Minkowski Functionals as probes of the CMB sky -- namely that of systematic differences ("residuals") when numerical and analytical MF are compared. We show that such residuals are in fact by-products of binning, and not caused by pixelation or masking as originally thought. We then derive a map-independent estimator that encodes the effects of binning, applicable to beyond our present work. Using this residual-free estimator, we show that small disk-like effects (as claimed by Vielva et al.) can be detected only when a large sample of such maps are averaged over. In other words, our estimator is noise-dominated for small disk sizes at WMAP resolution. To confirm our suspicion, we apply our estimator to the WMAP7 data to obtain a null result.Comment: 15 pages, 13 figure
    • …
    corecore