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1. Introduction

1.1 The role of structure formation in cosmology

The formation of nonlinear structures from tiny almost Gaussian perturbations by

gravitational instability is a central topic in cosmology. Most studies are done ei-

ther in general relativity (GR) using linear perturbation theory around the locally

homogeneous and isotropic Friedmann-Lemâıtre-Robertson-Walker (FLRW) model

or in Newtonian gravity, where extensive numerical computations have been done

with N-body simulations, preceded and accompanied by analytical work, to access

the nonlinear regime of structure formation. The formation of structures is sensitive

– 1 –



to the expansion of the universe, so the observed large-scale structure is a valuable

probe of cosmological evolution. There is also another side to the matter: pertur-

bations have a significant effect on the expansion rate once they enter the nonlinear

regime. In standard linear theory, the effect vanishes on average by construction. In

Newtonian gravity, this turns out to be true also in the non-perturbative regime (see

section 2.5). However, this result does not carry over to non-perturbative GR, where

the geometry is dynamical. Therefore, there could be a large effect on the average

expansion rate, the evolution of spatial curvature and light propagation.

The effect of deviations from exact homogeneity and isotropy on the average

expansion is known as backreaction. The effect was first studied in 1962 [1], and

an in-depth discussion was given 20 years later by George Ellis [2]. Ellis introduced

the term fitting problem to describe the issue of finding a model that best describes

the average of the real universe with its complex structures. The problems laid out

by Ellis and collaborators did not become mainstream concerns in cosmology at the

time, which may partly be due to the complexity of the issues. Another likely reason

is that cosmological observations were not precise enough to indicate any tension

with a homogeneous and isotropic cosmological model based on ordinary GR with

ordinary (visible and dark) matter. As more precise data has revealed that such

a model disagrees with observations, it has become topical to study backreaction

in more detail to see whether it could account for this failure [3–6]. We review

backreaction in classical GR due to the formation of nonlinear structures at late

times, with a focus on the possibility that it could explain this discrepancy. We

do not aim to give a historical overview of the literature, but rather try to explain

the relevant physics and highlight open questions. There are a number of reviews

with comprehensive lists of references [7–13]. We concentrate on structures that are

known to exist and that are expected in the standard structure formation scenario

based on usual models of inflation. In particular, we do not discuss models with Gpc-

scale structures where, for instance, the observer is located near the centre of a large

void [14]. We do not discuss the backreaction of classical or quantum perturbations

during inflation or reheating [15]. We also do not cover schemes that introduce some

extra structures to GR, which may be needed if the ‘fitting problem’ is to be solved

for tensorial objects such as the metric [16].

In section 1 we briefly review some relevant cosmological observations and dis-

cuss assumptions underlying the FLRW model. In section 2 we put into perspective

the equations that govern the average expansion, explain the meaning of average ac-

celeration and discuss the difference between GR and Newtonian gravity. In section 3

we discuss estimates of backreaction in perturbation theory and in non-perturbative

models. In section 4 we consider light propagation and the relation of spatially av-

eraged quantities to observables, as well as observational signatures of backreaction.

We conclude in section 5 with a summary.
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1.2 Cosmological observations

A linearly perturbed homogeneous and isotropic cosmological model with ordinary

matter (i.e. matter with non-negative pressure) and ordinary gravity (based on the

four-dimensional Einstein-Hilbert action) can explain all observations of the early

universe from Big Bang Nucleosynthesis onwards. The simplest such model, known

as the Standard Cold Dark Matter (SCDM) model, is matter-dominated at late

times and has flat spatial sections. The SCDM model can also account for late-time

observations at the accuracy that had been achieved in the 1980s. However, modern

observations have shown that the distance to the last scattering surface at redshift

z = 1090 is a factor of 1.5 to 2.0 larger than predicted [17,18] (if the Hubble constant

is held fixed and primordial perturbations have a power-law spectrum). Observations

of type Ia supernovae and large-scale structure [19–21] show that this discrepancy

occurs at redshifts of order unity, that is, at approximately 10 billion years. Most

observations probe distances, and the expansion rate is usually inferred through the

use of the FLRW relation between the distance and the expansion rate (see section

4). In the FLRW model, the explanation for longer distances is that the expansion

has accelerated, so objects have been pushed further away than expected.

There are few model-independent observations of the expansion rate as a function

of redshift, but the Hubble parameter today is relatively well known [18]. By combin-

ing with measurements of the matter density we obtain Ωm0 ≡ 8πGNρm0/(3H
2
0) ≈

0.2 . . . 0.4 [17, 22]. Combining it with the age of the universe instead [23], we get

H0t0 ≈ 0.8 . . . 1.1. In the SCDM model, Ωm0 = 1 and H0t0 = 2/3, so either way

we find that the expansion is faster than expected by a factor ranging from 1.2 to

2.2. This finding supports the interpretation of the distance observations in terms of

faster expansion. At the moment, model-independently it is possible to say only that

the expansion has decelerated less, not that it would have accelerated [24]. Analysis

of large scale structure [25], especially in combination with supernova data [26] can

provide strong constraints on the evolution of the Hubble parameter, though these

constraints depend on the assumption that the universe is close to FLRW. Currently,

we cannot conclude that the expansion would have accelerated without assuming the

validity of the FLRW approximation.

Within the FLRW model, the conclusion that the expansion rate has accelerated

follows directly from kinematical analysis of distance observations [20]. To obtain

acceleration in the FLRW model it is necessary to modify the dynamics either by

introducing some exotic form of matter that has negative pressure or by changing the

laws of gravitation on cosmological scales. In the simplest such model, the ΛCDM

model, constant vacuum energy or, equivalently, a cosmological constant is added.

The only difference between the ΛCDM model and the SCDM model is that in

the former the expansion rate increases at late times, which is sufficient to bring

predictions and observations into agreement (although problems appear to remain
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with structures on large scales [27–31]). This point is worth emphasizing: anything

that changes the expansion rate and the corresponding distances at late times by

the right amount (and that does not modify other things too much) accounts for

all of the observed discrepancies, whether of luminosities of supernovae, anisotropies

of the cosmic microwave background (CMB), the growth rate of structures or other

probes. Notably, all the relevant observations involve integrals over long distances

or averages over large scales.

1.3 The hypotheses behind the FLRW model

The common justification for using the FLRW model to describe the universe on

average is that the universe appears to be homogeneous and isotropic on large

scales. However, we have to distinguish between exact and statistical homogene-

ity and isotropy. Exact homogeneity and isotropy means that the spatial geometry

has a local symmetry: all points and directions are equivalent. (The topological

structure may break this symmetry globally.) Statistical homogeneity and isotropy

means that if we consider a large domain anywhere in the universe, the mean quan-

tities in the domain do not depend on its location, orientation or size, provided that

the domain is larger than the homogeneity scale1.

In the usual cosmological treatment, the early universe is assumed to be close to

exact homogeneity and isotropy in the sense that the difference between the energy

density, expansion rate and other quantities between any two spatial locations is

small. Cosmological observations, especially the CMB, provide strong support for

this assumption2, and we retain it. Nevertheless, when density perturbations become

nonlinear at late times, the universe is no longer locally close to homogeneity and

isotropy. However, it remains statistically homogeneous and isotropic on large scales,

assuming the initial distribution of perturbations had this property. Statistical ho-

mogeneity and isotropy (and a homogeneity scale) are predictions of the simplest

inflationary models. We assume that these assumptions hold in the real universe,

and that the homogeneity scale is of order 100 Mpc. Whether the existence of a ho-

mogeneity scale has been observationally established is a matter of contention [28,32],

and studies of the morphology of structures suggest that such a scale is no smaller

than 300 Mpc [33].

Two concepts that are sometimes used to motivate the use of the FLRW metric

to describe the universe are the Copernican principle and the cosmological principle.

According to the former, our location in the universe is not special, whereas accord-

1Assuming that a homogeneity scale exists, that is, that the mean density and other average

quantities converge to a scale-independent value as the volume increases. We make this assumption

throughout. In statistical physics, this property is known as spatial homogeneity – not to be confused

with the GR property of the same name which is related to local symmetry [28].
2However, it has not been proven and in principle the effects we discuss could also be relevant

in the early universe.
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ing to the latter all locations in the universe are equivalent. However, the Copernican

principle says nothing about possible symmetries of the geometry or the matter dis-

tribution. It is possible to have a space that has preferred directions or locations,

but where the observer is not in a preferred location. On the other hand, the cosmo-

logical principle is a statement about spacetime symmetry, however strictly speaking

it does not apply to the real universe because the universe contains structures. If the

principle is weakened and interpreted to refer to the distribution of structures, then

it is nothing but the statement of statistical homogeneity and isotropy. In modern

cosmology, this statement is a prediction of simple models of inflation, rather than a

principle, and it is subject to observational tests. Neither the Copernican principle

nor the cosmological principle (interpreted to refer to large-scale statistical proper-

ties) show that the universe would be described by the FLRW model. In the case of

observational tests [28, 32, 34–38], it is important to distinguish whether they probe

statistical homogeneity and isotropy, the FLRW metric or the Copernican principle.

(For example, the important check proposed in [34] tests the FLRW metric, not the

Copernican principle.)

Put simply, the FLRW model describes universes that are locally homogeneous

and isotropic on all scales, not universes that are only statistically homogeneous and

isotropic. Because there are large local deviations, the average evolution may be far

from the FLRW behavior even above the homogeneity scale. The possibility that the

observed change in average quantities from those of the SCDM model at late times

is due to the formation of structures may be termed the backreaction conjecture.

2. From the local to the average

2.1 The local expansion rate

We assume that the energy density dominates over pressure, anisotropic stress and

energy flux everywhere, in other words, that matter can be considered a pressureless

ideal fluid, or dust. This assumption does not hold in the real universe, where

deviations from dust evolution are important in regions of large density contrast [39].

However, it seems likely that the effect on average quantities is small, because the

fraction of volume in such regions is small [40]. For discussion of non-dust matter,

see [41–44]. In GR, the relation between the matter and the geometry is given by

the Einstein equation:

Gαβ = 8πGNTαβ = 8πGNρuαuβ , (2.1)

where Gαβ is the Einstein tensor, GN is Newton’s constant, Tαβ is the energy–

momentum tensor, ρ is the energy density and uα is the four-velocity of observers

comoving with the dust. The gradient of uα can be decomposed as

∇βuα =
1

3
hαβΘ+ σαβ + ωαβ , (2.2)
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where hαβ projects orthogonally to uα, i.e. onto the dust rest frame. The trace

Θ ≡ ∇αu
α is the volume expansion rate, the traceless symmetric part σαβ is the shear

tensor and the antisymmetric part ωαβ is the vorticity tensor (see e.g. [45, 46]). In

the FLRW case, the volume expansion rate is 3H , where H is the Hubble parameter,

and the shear and the vorticity vanish.

The equations can be be decomposed into scalar, vector and tensor parts with

respect to the spatial directions orthogonal to uα. We need only the following scalar

parts:

Θ̇ +
1

3
Θ2 = −4πGNρ− 2σ2 + 2ω2 (2.3)

1

3
Θ2 = 8πGNρ−

1

2
(3)R + σ2 − ω2 (2.4)

ρ̇+Θρ = 0 , (2.5)

where the dot stands for a derivative with respect to the proper time t measured by

observers comoving with the dust; σ2 ≡ 1
2
σαβσαβ ≥ 0 and ω2 ≡ 1

2
ωαβωαβ ≥ 0 are

the shear scalar and the vorticity scalar, respectively. In the irrotational case, (3)R

is the scalar curvature of the hypersurface which is orthogonal to uα; see [47] for the

definition of this term in the case of non-vanishing vorticity.

Equation (2.5) shows simply that the energy density is proportional to the inverse

of the volume, in other words that mass is conserved. The Hamiltonian constraint

(2.4) is the local equivalent of the Friedmann equation for an arbitrary dust space-

time, and it relates the expansion rate to the energy density, spatial curvature, shear

and vorticity. The Raychaudhuri equation (2.3) gives the local acceleration. We

assume that the fluid is irrotational, i.e. that the vorticity is zero. As with the

assumption that the matter is dust, the irrotationality assumption is violated in the

real universe, but the violation is not expected to change the overall picture because

vorticity is expected to be large only in a small fraction of space. See [42] for the

case in which the vorticity is non-zero. Because vorticity contributes positively to

the acceleration, setting it to zero gives a lower bound. In this case, the local ac-

celeration is always negative, or at most zero, which simply expresses the fact that

gravitation is attractive for matter that satisfies the strong energy condition, which

here reduces to ρ ≥ 0.

2.2 The average expansion rate

When discussing averages, the first question concerns the choice of the hypersurface

on which the average is taken. We choose the hypersurface orthogonal to uα, which

is also the hypersurface of constant proper time t measured by the observers; we

discuss this choice in section 4. The spatial average of a scalar quantity ψ is its

Riemannian volume integral over a compact domain D on the hypersurface, divided
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by the volume of the domain:

〈ψ〉D(t) ≡

∫

D
d3X

√

(3)g(t, X i)ψ(t, X i)
∫

D
d3X

√

(3)g(t, X i)
, (2.6)

where (3)g is the determinant of the metric on the hypersurface of constant proper

time t, and X i are Gaussian normal coordinates that are constant along geodesics of

the dust flow.

Averaging (2.3)–(2.5), we obtain the following well-known set of equations [48]3:

3
äD
aD

= −4πGN〈ρ〉D +QD (2.7)

3
ȧ2D
a2
D

= 8πGN〈ρ〉D −
1

2
〈(3)R〉D −

1

2
QD (2.8)

∂t〈ρ〉D + 3
ȧD
aD

〈ρ〉D = 0 ; a−2
D
∂t(a

2
D〈

(3)R〉D) + a−6
D
∂t(a

6
DQD) = 0 , (2.9)

where the kinematical backreaction variable QD(t) contains the effect of inhomogene-

ity and anisotropy,

QD ≡
2

3

(

〈Θ2〉D − 〈Θ〉2D
)

− 2〈σ2〉D , (2.10)

and the scale factor aD(t) is defined so that the volume of the spatial domain is

proportional to aD(t)
3,

aD(t) ≡

(

∫

D
d3X

√

(3)g(t, X i)
∫

D
d3X

√

(3)g(t0, X i)

)
1
3

, (2.11)

where aD has been normalized to unity at time t0. Because Θ gives the volume

expansion rate, this definition of aD is equivalent to the definition 3ȧD/aD ≡ 〈Θ〉D.

We also use the notation HD ≡ ȧD/aD.

The integrability conditions (2.9) assure that the volume expansion law is the

integral of the volume acceleration law. Whereas the mass conservation law for dust

is sufficient in the homogeneous case, in the inhomogeneous case there is a further

equation that dynamically relates the averaged intrinsic and extrinsic curvature in-

variants. Note that in the presence of inhomogeneities the averaged scalar curvature

does not obey a separate conservation law as the density does (unlike in FLRW cos-

mology): only a combination of the average spatial curvature and the kinematical

backreaction variable is conserved [9].

The set of averaged equations (2.7)–(2.9) has a slightly different physical inter-

pretation than the FLRW equations due to the different meaning of the scale factor.

3These equations are the simplest example of the averaged equations known in the literature as

the “Buchert equations”.
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In the FLRW model, the scale factor is a component of the metric, and indicates how

the space evolves locally. (The evolution of any finite volume is of course given by

the same scale factor.) In the present context, aD(t) does not describe local behavior,

and it is not part of the metric: it gives only the total volume of the region over

which the average is taken.

The average kinematical equations above can be written in a form reminiscent

of the FLRW model, with the correction terms included as sources [41]:

3
äD
aD

= −4πGN(̺
D

eff + 3pDeff) (2.12)

3
ȧ2
D

a2
D

= 8πGN̺
D

eff (2.13)

˙̺Deff + 3
ȧD
aD

(̺Deff + pDeff) = 0 , (2.14)

where the effective energy density and effective pressure are defined as

̺Deff := 〈̺〉
D
+ ̺Φ ̺Φ := −

1

16πGN
QD −

1

16πGN
〈(3)R〉D (2.15)

pDeff := pΦ pΦ := −
1

16πGN
QD +

1

48πGN
〈(3)R〉D , (2.16)

respectively. This form of the equations suggests interpreting the new sources due

to the curvature inhomogeneities in terms of a minimally coupled scalar field [3, 49,

50], which provides a different language in which to talk about inhomogeneities in

geometrical variables. However, the effective sources can have more general behavior

than a minimally coupled scalar field. The ‘effective kinetic energy’ is not restricted

to be positive-definite, and the effective equation of state can correspondingly evolve

from larger than −1 to smaller than −1.

There has been much discussion about the possible gauge-dependence of the

average expansion rate [43, 44, 51–53]. It is useful to distinguish three different con-

cepts: gauge-dependence, coordinate dependence and dependence on the choice of

the averaging hypersurface. Gauge choice refers to the mapping between a fictitious

background spacetime and the real spacetime. In the covariant formalism, there is

no split into background plus perturbations, so the issue of gauge-dependence does

not arise. The averaging procedure expressed in the covariant formalism is also in-

dependent of the choice of coordinates. The result does, however, depend on the

hypersurface on which the average is taken [44, 51–53]; note that this is a physical

choice, not a matter of mathematical description. We discuss the choice of hyper-

surface in section 4.

2.3 Physical meaning of average acceleration

If the variance of the expansion rate is large enough compared with the shear and the

energy density, then the average expansion rate accelerates according to (2.7) and
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(2.10), even though (2.3) shows that the local expansion rate decelerates everywhere.

This feature is related to the fact that time evolution and averaging do not commute,

and it may seem somewhat counterintuitive. However, the explanation is rather

simple. Because the universe is inhomogeneous, different regions expand at different

rates. Regions with faster expansion rate increase their volume more rapidly, by

definition. Therefore the fraction of volume in faster expanding regions rises, so the

average expansion rate can rise. This effect is missing in the FLRW model. (Whether

the average expansion rate actually does rise depends on how rapidly the fraction of

faster regions grows relative to the rate at which their expansion rate decelerates.)

To avoid confusion, it is useful to distinguish three different concepts of acceler-

ation. Local acceleration means that the expansion rate of the local volume element

increases. Average acceleration means that the rate of growth of the total volume

of the region under consideration increases. Finally, apparent acceleration refers to

the situation in which observations (typically distance observations) are analyzed by

fitting to a FLRW model and the expansion rate of the fitting model accelerates. In

the case of the FLRW universe, these three accelerations coincide due to the high

symmetry. As discussed in section 1.2, present observations provide strong support

for apparent acceleration, whereas average acceleration has not been established in

a model-independent manner. (In models where we are located at the centre of a

spherically symmetric inhomogeneity, apparent acceleration typically does not cor-

respond to local acceleration or average acceleration [54–56].) If backreaction is

significant in the real universe, the average expansion has to decelerate less than in

the SCDM model, but it is not clear whether it actually needs to accelerate, given

that if deviations have a large effect on the average expansion rate, they generally

also significantly modify its relation to the distance. We return to this topic in section

4.

2.4 Spatial curvature, entropy and topology

It is possible to understand the backreaction effect in terms of the variance of the

expansion rate and the backreaction parameter QD, or alternatively in terms of the

average spatial scalar curvature 〈(3)R〉D. The key relation is the integrability condi-

tion (2.9) which relates the backreaction variable and the average spatial curvature.

The coupling demonstrates the connection between structures that populate the uni-

verse and its spatial geometry: not only does the extrinsic curvature (whose trace

gives the expansion rate) change but also the intrinsic curvature evolves during struc-

ture formation. In the FLRW case, there are no structures, backreaction vanishes

and the spatial curvature term in (2.9) is conserved individually. In this case the

spatial curvature evolves as 〈(3)R〉D ∝ a−2 with the local scale factor a(t).

A non-vanishing backreaction termQD can lead, due to its coupling to the spatial

curvature, to a global gravitational instability of the FLRW model. In other words,

it is possible that perturbations of the average spatial curvature and the average
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expansion rate grow so that averages are driven away from the FLRW behavior,

as occurs in some scaling models for the average evolution [57]. In the case of the

density distribution, over- and underdense regions add up to a prescribed average

density as a result of mass conservation. By contrast, contributions of positively and

negatively curved regions to the average spatial curvature do not in general cancel,

because there is no isolated conservation law for the spatial curvature [58]. It might

be expected that in a universe that becomes dominated by voids the average spatial

curvature would evolve to become negative, even if it almost vanishes at early times.

Whether the spatial curvature actually evolves in this manner has to be resolved in a

realistic model; in the FLRW model, even the possibility of such evolution is absent.

The difference between any given model and the homogeneous and isotropic

FLRW model is measurable through the (domain-dependent) Kullback–Leibler dis-

tance SD, an information theoretical relative entropy that arises naturally from the

non-commutativity of averaging and time-evolution and is likely to increase in the

course of structure formation [59]:

∂t〈ρ〉D − 〈∂tρ〉D = −
∂t SD

VD
; SD : =

∫

D

ρ ln
ρ

〈ρ〉D

√

(3)gd3X , (2.17)

where VD is the volume of the domain. In the FLRW model the relative entropy is

zero, because the distribution is completely unstructured.

Intrinsic curvature is also related to the topology of spatial sections. In a New-

tonian description of the evolution of structures on a spatially flat background, there

is no spatial curvature and there are six different orientable space forms out of which

the three-torus is usually chosen. This corresponds to implementing periodic bound-

ary conditions on deviations from the prescribed background. In GR, the situation is

more involved due to intrinsic curvature, and there are an infinite number of possible

topological space forms. The situation simplifies for GR in 2+1 dimensions. Accord-

ing to the Gauss-Bonnet theorem, for a closed Riemannian two-space, the volume

integral of the spatial curvature is a topological invariant related to the Euler char-

acteristic of the two-dimensional manifold. Therefore, the average spatial curvature

always evolves as a−2
D
. Correspondingly, it follows from the 2 + 1-dimensional equiv-

alent of the integrability condition (2.9) that QD is always proportional to a−4
D

and

cannot lead to acceleration [46, 60]. If the topology were also to fix the average

curvature in three dimensions, the dynamics of the average spatial curvature, and

hence backreaction, would also be constrained by the topology of space in the real

universe. However, in three dimensions the relation between topology and curvature

is more involved. This is an ongoing area of investigation and, to a large extent,

an open discipline of mathematical physics; there has recently been progress in that

field because of results by Perelman (see e.g. [61]).
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2.5 Newtonian cosmology

The present framework can also be set up for Newtonian gravity; in fact, the av-

eraged equations were derived first in the Newtonian framework (along with the

adaptations to GR) [62]. In Newtonian theory, spatial averaging 〈〉D can be defined

for all tensor fields (not only scalars, as in GR) by the Euclidean volume integral,

where D is an Eulerian domain. The local Raychaudhuri equation (2.3), which gov-

erns the acceleration, is the same in both theories, so the averaged equation (2.7)

is also identical. However, there are important differences. In Newtonian theory we

can introduce a diffeomorphism ft that maps the initial (Lagrangian) positions of

fluid elements (labelled by their Lagrangian coordinates Xk) to Eulerian positions

at time t, xa = fa(Xk, t), and the fluid deformation can be measured by the gra-

dient ∂fa/∂Xk. The volume evolution along the trajectories of a collection of fluid

elements of an Eulerian domain D is then considered through the volume average,

VD =
∫

D
d3x =

∫

Di

J(Xk, t)d3X , where the domain Di is comoving with the collection

of fluid elements, D is the initial domain and J = det(∂fa/∂Xk) denotes the Jaco-

bian of the coordinate transformation from Eulerian to Lagrangian coordinates and

measures the local volume deformation. The fluid geometry, as it is embedded into

the Euclidean vector space, is described by the Lagrangian metric with the spatial

line element

ds2 = gEijdX
idXj = δab

∂fa

∂X i

∂f b

∂Xj
dX idXj . (2.18)

This metric is flat (i.e. Euclidean), because it can be reduced to the form δij by

the inverse of the transformation ft. In GR, in contrast, the volume deformation is

non-integrable. If we introduce non-exact differential forms, ηa 6= dfa and express

them in an exact basis, ηa = ηaidX
i, the metric coefficients give the Riemannian

spatial line element

ds2 = gRijdX
idXj = δabη

a
iη

b
j dX

idXj , (2.19)

where the former Lagrangian coordinates Xk are now the local coordinates in the

tangent space at a point on the Riemannian manifold, and the transformed volume

element Jd3X is now the Riemannian volume element with J = det(ηai) =
√

(3)g.

The non-existence of the embedding into a Euclidean vector space, i.e. the non-

integrability of the volume deformation, gives rise to intrinsic curvature. The back-

reaction term QD is built in the same way in both theories from invariants of the

expansion tensor. In the Newtonian theory, QD can be expressed as a full divergence

because of the above integrability property. The divergence can then be transformed

to a boundary term via Gauß’ theorem4. In GR, by contrast, QD does not reduce to

4One consequence is that in the Newtonian theory we can provide a morphological interpretation

of backreaction: the backreaction variable QD can be expressed in terms of three of the four

Minkowski functionals [9] (section 3.1.2). These measures were introduced into cosmology by Mecke

et al. [63] to statistically assess morphological properties of cosmic structure [33, 64].

– 11 –



a boundary term, which is related to the fact that (in 3+1 or more dimensions) the

spatial curvature can have non-trivial evolution.

These differences are crucial for backreaction. When we impose periodic bound-

ary conditions in Euclidean space, the backreaction variable QD is strictly zero on the

periodicity scale (a three-torus has no boundary). This is the construction principle

for structure formation models in cosmological simulations. Therefore, there is no

global backreaction, and QD simply describes cosmic variance of the peculiar-velocity

gradient in the interior of the structure simulation box5. This point is interesting in

itself, because N-body simulations have been set up without investigating backreac-

tion. If QD were not a full divergence, the construction of N-body simulations would

be inconsistent. Because in Riemannian geometry QD is in general not a boundary

term, current cosmological simulations cannot describe a global backreaction effect.

If backreaction is substantial, then current Newtonian simulations (as well as New-

tonian analytical studies) are inapplicable in circumstances where deviations of the

intrinsic curvature are important.

If backreaction is globally significant (and the universe is statistically homoge-

neous and isotropic), this is due to non-Newtonian aspects of gravity [8,9,48,53,58,

60, 62, 66–69]. It is therefore crucial to understand the relation between Newtonian

gravity and GR, which is sometimes called the Newtonian limit of GR. In the above

description of fluid deformations in GR the Newtonian limit is obtained if the non-

integrable deformation one-forms can be reduced to integrable ones, ηa → dfa. This

limit automatically implies that the geometry is Euclidean, in particular that the in-

trinsic curvature and the magnetic part of the Weyl tensor vanish everywhere [70]6.

However, it is not clear to which physical circumstances the above formal limiting

process corresponds to.

In cosmology (unlike in the asymptotically flat case) the Newtonian limit is

not completely understood. In other words, it is not clear under which physical

conditions Newtonian gravity gives a good approximation to GR in an extended

system with non-linear deviations. In fact, because the Newtonian limit is singular,

it would be more accurate talk about the small-velocity, weak field limit of GR,

which is qualitatively different from Newtonian gravity [69, 72–81]. For example,

the Newtonian equations have solutions that are not the limit of any GR solution7.

5We can still compute the backreaction term in Newtonian simulations on scales below the

periodicity scale to determine how the evolution of average quantities on scales smaller than the

size of the box is affected by backreaction [65].
6There is no need to consider a quasi-Newtonian metric form such as the conformal Newtonian

gauge, as is often done, to perform this limit. In the comoving-synchronous setting, we obtain the

Lagrangian form of the Newtonian equations [71] in this limit, not the Eulerian form as in the

conformal Newtonian gauge.
7In [82] the problem is approached from the other side: assuming a Newtonian cosmological

model, what is the perturbed GR model that it approximates? However, the question of interest

here is instead the following: given a GR model evolved from realistic initial conditions, is there
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Newtonian gravity can thus give a misleading picture of gravitational evolution even

in the case of slowly moving sources whose gravitational fields are not strong. An

important qualitative difference is that in the Newtonian case there exists a global

conserved quantity, the total energy, regardless of whether the system is homogeneous

or inhomogeneous (as long as it is isolated, i.e. boundary terms can be neglected).

That inhomogeneities cannot change the global average expansion rate in Newtonian

cosmology can be understood in terms of this constraint. In GR, in the FLRW case,

there is a conserved quantity corresponding to the Newtonian energy term, namely

the spatial curvature (multiplied by the square of the scale factor). However, in

contrast to the Newtonian theory, this conservation law is only due to the FLRW

symmetry. If the universe is anisotropic and/or inhomogeneous, there is in general

no conservation law for the spatial curvature. GR in 2+1 dimensions is closer to the

Newtonian case in the sense that such a conservation law does exist, as discussed in

section 2.4.

On a related topic, let us briefly discuss the behavior of spherically symmetric

dust distributions in Newtonian gravity and GR. In GR, Birkhoff’s theorem states

that spherically symmetric vacuum solutions are also static or homogeneous or both

(the theorem can be generalized to the almost spherically symmetric case [83]), and

that the only static solution is the Schwarzschild solution. Birkhoff’s theorem has no

relevance when the boundary of the region under consideration is not in vacuum. In

the case of dust matter, there are two interesting results. First, both in Newtonian

gravity and in GR, the evolution of a spherically symmetric dust region depends

only on the distribution of matter inside the region. Second, in the Newtonian case,

the average evolution is the same as that of a FLRW dust universe. Both of these

two statements are sometimes confused with Birkhoff’s theorem, which is unfortunate

especially as the second result does not hold in GR, except when the spatial curvature

vanishes or is strongly restricted (see [11], section 7.2). From the backreaction point

of view, the Newtonian result follows from the fact that QD is a boundary term that

vanishes for spherical symmetry [65]. In GR, this is not the case, and the average

evolution can be different from the FLRW model. Spherically symmetric models

have been used to demonstrate accelerating expansion due to backreaction [95].

3. Perturbation theory and non-perturbative models

3.1 Perturbative arguments

It has been argued that backreaction is small because the universe remains close

to FLRW in the sense that metric perturbations are small even when the density

perturbation becomes nonlinear. It is useful to separate two distinct parts of this

argument. The first is that the metric perturbations around a FLRW spacetime are

any Newtonian model that approximates it at late times, and if so, what is it?
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small at all relevant times. The second is that smallness of metric perturbations

implies that the average evolution remains close to the FLRW case.

Let us first assume that metric perturbations indeed remain small. From this

assumption alone we cannot conclude that backreaction would be small, because the

perturbations of the expansion rate (and the distance) depend on first and second

derivatives of the metric perturbations, the latter of which become large at the same

time as the density perturbations. In other words, perturbations of the spacetime

curvature are large. Indeed, in the real universe there are deviations of order unity

in the local expansion rate and in the spatial curvature (see [84] for estimates of

the spatial curvature in astrophysical systems of different sizes). These are not

coordinate artifacts, but rather deviations in physically measurable quantities, and

any realistic model has to account for them. The local variation is thus of the same

size as the observed average deviation from the SCDM model: the issue is whether

their distribution is such that positive and negative deviations cancel on average.

This question is related to the absence of a conservation law for the average spatial

curvature.

Estimates in first order perturbation theory [4, 6, 52, 85–87] cannot resolve the

issue, because the average of the first order perturbation vanishes, and the contribu-

tion of the square of the first order perturbations is not gauge-invariant without the

contribution of the intrinsic second order perturbations8.

At second order, the effect on the average expansion rate is small [88]. How-

ever, when density perturbations become nonlinear, contributions from higher order

terms become as important as the second order terms [53, 67]. Nevertheless, the

average expansion rate remains close to the FLRW case if there is a coordinate sys-

tem in which the following conditions hold: (i) the metric perturbations and their

first derivatives are small, (ii) the time derivatives of metric perturbations are at

most of the same order as the perturbations multiplied by the background Hubble

parameter, (iii) the perturbation of the observer four-velocity is small, and (iv) the

difference between the observer four-velocity and the four-velocity that defines the

averaging hypersurface is non-relativistic [68]. Essentially, because perturbations of

the Christoffel symbols remain small in this coordinate system, the spatial structure

remains close to linear theory, even though variations in the spacetime curvature are

large. Therefore, large deviations cancel in the average, and such models may be

termed ’quasi-Newtonian’, because in Newtonian theory cancellation of deviations

in the expansion rate is built in, as discussed above. Under these assumptions, the

average spatial curvature and the redshift also remain close to the FLRW behavior.

However, deviations do not cancel in all quantities. The shear and the variance of

the expansion rate become large at the same time as density perturbations, though

their contributions to the expansion rate cancel. The average acceleration also devi-

8The separation between the square of first order perturbations and intrinsic second order per-

turbations is gauge-dependent [88].
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ates much from the background behaviour [89]. This follows from the commutation

rule 〈θ̇〉D = ∂t〈θ〉D − (〈θ2〉D − 〈θ〉2D) and the feature that the average expansion rate

is close to the background while the variance is large. (The commutation rule is a

straightforward consequence of (2.6).) An important quantity in which deviations

do not in general cancel is the luminosity distance. There is a counter-example in

which all of the above assumptions are satisfied in a perturbed SCDM model, but

the luminosity distance receives large corrections so that it is identical to that of the

ΛCDM model with ΩΛ0 = 0.7 [90].

It is not obvious whether the above assumptions are satisfied in the real universe,

namely whether the metric remains close to the same global FLRW background ev-

erywhere [10, 68]. For example, under the above assumptions the density (assuming

a spatially flat background) is ρ = 3H2+2a−2∇2Ψ, where H is the background Hub-

ble rate, a is the background scale factor and −2Ψa2δij is the scalar perturbation of

the spatial part of the metric. For a dust background, H2 ∝ a−3. If we consider a

stabilized region with constant density, Ψ has a decaying part ∝ a−1 and a growing

part ∝ a2. In this situation, perturbations of the local metric with respect to a global

background eventually become large. However, perturbations becoming large does

not imply that the gravitational fields would become strong, but simply that the

stabilized region becomes more and more different from the expanding background

whose density and curvature decrease. (Once the perturbations become large, their

growth could be even faster than indicated by this argument.) However, the situ-

ation is complicated by the fact that it would be more appropriate to discuss the

evolution in terms of the proper time and the orthogonal spatial coordinates instead

of the background time and space coordinates (see also [11], section 7.4.2). Once the

second derivatives of the metric become large, the coordinate transformation from

one to the other is non-perturbative, and the question of whether backreaction is

significant seems to escape the reach of standard perturbation theory. If it could be

demonstrated that starting from realistic initial conditions, perturbations and their

first derivatives have remained small until today, the backreaction issue would be

solved for the average expansion rate and redshift (the luminosity distance would

require more work).

An alternative to standard perturbation theory is to employ gradient expansion

techniques that allow to go substantially beyond the perturbative regime [67,91]. One

further remedy could be the formulation of perturbation theory in the actually curved

space sections by employing nonintegrable deformations in the local tangent space

[11, 92]. However, even in such a perturbation framework, a global background has

to be specified, an issue that might be overcome by the formulation of perturbation

theory around the average distribution rather than the background. A first step

towards such a theory is presented in [93].

Constructions in which it is assumed that the metric remains close to the FLRW

background are thus severely limited in to what extent it is possible to study backre-
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action. For example, this is true for the new formalism for averaging and perturbation

theory presented in [94], which claims that if metric perturbations around a global

background metric remain small, the average evolution can be modified only by a

possible radiation-like source term due to the gravitational degrees of freedom. Al-

though the assumption of small perturbations around a global background remains

to be justified, [94] presents an example of a formalism for obtaining an average

geometry (and not only average scalar quantities).

3.2 Non-perturbative models

In addition to perturbative arguments, backreaction has been studied in toy models

and semirealistic models that do not rely on perturbation theory.

3.2.1 Exact toy models

A few toy models have demonstrated how backreaction can lead to accelerating

expansion in a dust universe by using the exact spherically symmetric solution [95]

or a model with two disjoint regions [8]. Apart from their use as existence proofs,

such models can be used to understand qualitative features of average acceleration.

In the real universe, the early distribution of perturbations of the density and

the expansion rate is very smooth, with only small local variations. However, as per-

turbations become nonlinear, regions evolve in distinct ways. In a simplified picture,

overdense regions slow down more as their density contrast grows, and eventually

they turn around and collapse to form stable structures. Underdense regions become

even emptier, and their deceleration decreases. Regions thus become more differen-

tiated and the variance of the expansion rate grows, contributing positively to the

volume acceleration, as (2.7) shows.

In [8] a toy model of this evolution was considered, in which two spherically

symmetric regions which are taken to individually evolve according to Newtonian

gravity. One of these regions is underdense and the other overdense, so they evolve

like dust FLRW universes with negative spatial curvature and positive spatial cur-

vature, respectively. There is one free parameter in the model: the relative size of

the regions at some instant of time. This parameter can be chosen such that there

is a period of accelerated average expansion. Initially, the evolution is close to the

FLRW case. As the slower region starts to deviate significantly from the FLRW

evolution, the average expansion rate decreases. However, the underdense region

eventually comes to dominate the volume, so the average expansion rate rises. If the

underdense region catches up quickly enough, not only can the average expansion

rate accelerate, but the average Hubble parameter can rise. In the FLRW model such

evolution would require a violation of the null energy condition, i.e. an equation of

state more negative than −1, or an equivalent modification of gravity.

As (2.8) and (2.10) show, the volume acceleration is bounded from above by

the variance of the expansion rate. The average expansion rate is also bounded
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from above; estimates in terms of the maximum value of the local expansion rate

have been proposed. For irrotational dust, the maximum is achieved in a completely

empty constant-curvature region, which implies that HDt ≤ 1 [96, 97]. This bound

is also expected to hold in realistic models, in which vorticity and deviations from

dust behavior are not significant in large fractions of volume [42].

The acceleration is due to the interplay between fast and slow expanding regions.

The larger the difference between the fast and slow regions is, the more rapidly the

fast regions take over and the larger is the acceleration, which explains why the

variance in QD contributes positively to acceleration. For this reason, a period

in which the universe decelerates more than in the SCDM model is conducive to

acceleration.

3.2.2 A semirealistic model

In the case when the universe is not everywhere near to a global FLRW background,

we cannot write down an exact metric from which to calculate the expansion rate.

However, because we are interested only in large-scale averages, rather than the

local details of every structure, a statistical description is sufficient. To determine

the average expansion rate, we need to know which fraction of the volume of the

universe has which expansion rate at a given time. One way to do so is to treat the

universe as an ensemble of regions in different stages of expansion or collapse, and

to have a model for the evolution of the statistical distribution which is faithful to

the physics of structure formation.

The problem is well-defined in the sense that the initial conditions, the matter

content and the power spectrum are known. For a Gaussian distribution, all statisti-

cal information is contained in the power spectrum, and because structure formation

is a deterministic process, all statistical quantities at late times can be traced back

to the initial power spectrum. The question is how to find a tractable description of

the gravitational processing of the initial density field.

A semirealistic model was constructed in [60,98]. The starting point is that the

universe at early times can be described as a dust-dominated spatially flat FLRW

model with linear Gaussian perturbations. The idea is to use the number density

of peaks and troughs in the initial density field, smoothed on a given scale, as a

measure of the fraction of volume occupied by regions of a given density contrast

on that scale. The smoothing scale is fixed by the requirement that the root mean

square of the smoothed density contrast, σ(t, R) is unity at all times; in other words,

the smoothing scale evolves to follow the size of typical structures. The regions

are taken to be spherical and to evolve as in Newtonian gravity, so they behave like

FLRW universes, as in the two-region toy model. The peak number density is known

analytically in terms of the initial power spectrum [99]. The power spectrum depends

on two parts, the primordial power spectrum, determined in the early universe by

inflation or some other process, and the transfer function T (k), which describes
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(a) (b)

Figure 1: The expansion rate HDt (denoted Ht) as a function of the age of the universe

in logarithmic units, log(t/yr). The two curves correspond to different approximations for

the transfer function. See [60] for details.

the evolution between the primordial era and today in linear theory. Given an

(almost) scale invariant power spectrum and the cold dark matter transfer function,

the average expansion rate is fixed.

Figure 1 plots the expansion rate in terms of HDt, showing significant differences

from the FLRW behavior at late times. The size of the deviation, 20% to 30%, is of

the same order of magnitude as the observed signal, 20% to 70%. More remarkably,

the timescale for significant change is 10 billion years, which agrees with observations.

The reason for the rise ofHDt is that underdense regions take up more and more of the

volume. If the universe were completely dominated by totally empty voids, we would

have HDt = 1. Because the voids are not completely empty and there are overdense

regions, HDt saturates at a value somewhat smaller than unity. (The expansion

only decelerates less, the model does not have any acceleration. The absence of

acceleration is related to the fact that overdense regions do not appreciably slow

down the expansion rate before the underdense regions take over.)

The only scale in the problem is the matter-radiation equality scale k−1
eq ≈ 100

Mpc which determines the turnover of the CDM transfer function. Small wave-

length perturbations that enter the horizon during the radiation-dominated era are

suppressed and perturbations with wavelengths larger than k−1
eq retain (approxi-

mately) their original amplitude. The combination of the corresponding matter-

radiation equality time teq ≈ 50 000 yr and the amplitude of the primordial per-

turbations, A = 3 × 10−5, determines when the expansion rate will change sig-

nificantly. Perturbations with wavelength equal to k−1
eq form non-linear structures

when σ(t, R = k−1
eq ) = 1. For a nearly scale-invariant spectrum, this happens when

t ∼ A−3/2teq ≈ 100 . . . 1000 Gyr; after that, there is no scale in the system, so HDt

saturates to a constant. Transition begins somewhat earlier at t ∼ 10 Gyr, as seen

in figure 1.

It is interesting that the amplitude of the change in the expansion rate as well

as the timescale come out roughly in agreement with observations. However, the

model involves uncontrolled approximations, and cannot be trusted beyond an order
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of magnitude. It is also possible that a more careful statistical treatment would

reveal cancellations which significantly change this approximate estimate.

3.2.3 A generic multiscale model

In the same spirit as the previous models, we can consider a general volume parti-

tioning of the universe by introducing a union of disjoint overdense regions M and

a union of disjoint underdense regions E , both of which make up the total region D,

which is considered to contain the homogeneity scale. The averaged equations can

be split accordingly to obtain for the kinematical backreaction [58] the result

QD = λMQM + (1− λM)QE + 6λM (1− λM) (HM −HE)
2 , (3.1)

where λM denotes the volume fraction of the overdense regions compared with the

volume of the region D. In a Gaussian random field this fraction would be 0.5 and it

would gradually drop in a typical structure formation scenario that clumps matter

into small volumes and that features voids that gradually dominate the volume in

the course of structure formation, see figure 3.2.3. A similar construction has been

used in the so-called timescape cosmology proposed by Wiltshire [100].
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Figure 2: The evolution of the expansion rates HF t (denoted Ht) averaged over regions

F = D, E and M are depicted for a volume-partitioned universe. (The initial conditions

on D are given in terms of a standard CDM spectrum.) On the homogeneity scale D (full

line; green) this function increases and is at late times mostly governed by the evolution in

underdense regions E (dotted line; blue) due to their volume-dominance. In the union of

overdense regionsM (dashed line; red) this function decreases because mass agglomerations

tend to form stationary regions that decouple from the global expansion. This evolution

scenario is based on a backreaction scenario investigated in [101]. Figure by A. Wiegand

(private communication).

If we ignore, for the sake of simplicity, the individual backreaction terms on

the partitioned domains (as in the models discussed above), the total backreaction

features a positive-definite term due to the variance of the different expansion rates
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of over- and underdense regions. This term can lead to acceleration in the volume

expansion rate of the domain D [101]. Refining the multiscale model by includ-

ing non-zero individual backreaction terms, for example by an extrapolation of the

leading perturbative mode in second-order perturbation theory [102], which also cor-

responds to the leading order in a Newtonian non-perturbative model (i.e. where

the backreaction terms decay in proportion to a−1
D
) [65], we can even produce a cos-

mological constant behavior of the scale factor over the homogeneity scale D (see

figure 3 in [101]). Such behavior can only be transient, however, and the acceleration

is expected to be followed by a phase of deceleration.

4. Light propagation

4.1 Connection between the expansion rate and observables

A key question is how the spatial averages discussed thus far are related to observa-

tions. This issue is tied to the averages’ dependence on the choice of the hypersurface

of averaging. Almost all cosmological observations are made along the lightcone, as

they measure the redshift, the angular diameter distance (or equivalently the lumi-

nosity distance) and other quantities related to bundles of light rays. In a general

spacetime, these quantities are not determined solely by expansion, and certainly

not by the average expansion rate along spacelike slices. However, in a statistically

homogeneous and isotropic universe in which the distribution evolves slowly, the

average expansion rate may determine the leading behavior of the redshift and the

distance over large scales [42,55,103]. Consideration of the observables also identifies

the relevant hypersurface of averaging. In a general dust spacetime, the redshift is

given by

1 + z = exp

(
∫ η0

η

dη

[

1

3
Θ + σαβe

αeβ
])

, (4.1)

where η is defined by d
dη

≡ (uα + eα)∂α, and eα is the spatial direction of the null

geodesic. The direction eα changes slowly for typical light rays [42], whereas the dust

shear is correlated with the shape and orientation of structures and changes on the

length scale of those structures. If there are no preferred directions, so structures on

large scales are oriented in all directions equally, σαβ should contribute via its trace,

which is zero. Therefore, the integral over σαβe
αeβ should vanish up to statistical

fluctuations and corrections from correlations between σαβ and eα and the evolution

of the distribution. We can split the local expansion rate as Θ = 〈Θ〉D +∆Θ, where

∆Θ is the local deviation from the average, and similarly argue that the integral of

∆Θ is suppressed relative to the contribution of the average expansion rate. The

change in the distribution also has to be slow compared with the time it takes for

a light ray to pass through a homogeneity scale sized region. If the homogeneity
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scale today is of the order 100 Mpc, then the crossing time is indeed much smaller

than the time scale for the change in the distribution, which is given by the Hubble

scale H−1
0 ≈ 4000 . . . 5000 Mpc. In the early universe, structure formation was less

advanced, so the homogeneity scale relative to the Hubble scale is even smaller further

down the null geodesic.

Here the choice of hypersurface comes into play. The relevant hypersurface is the

one in which variations around the mean cancel, in other words the hypersurface of

statistical homogeneity and isotropy. Because the evolution of structures is governed

by the proper time, one can argue that this hypersurface is close to the hypersurface of

constant proper time [8,60,103]. However, the two hypersurfaces are not exactly the

same, and in the realistic case when the observer four-velocity is not irrotational, the

hypersurface of constant proper time is not orthogonal to the observer four-velocity.

The details are thus more complicated, but non-relativistic changes in the four-

velocity field that defines the hypersurface of averaging lead only to small changes in

the average expansion rate, as long as the distribution is statistically homogeneous

and isotropic and the averaging scale is at least as large as the homogeneity scale [42].

However, a one-dimensional sample may converge to homogeneity significantly slower

than a three-dimensional one [104].

These cancellations also explain why the large variance required for significant

backreaction does not necessarily lead to large deviations in the observed CMB tem-

perature (which is given simply by the redshift of the CMB photons). It is sometimes

claimed that if all observers measure a nearly isotropic CMB sky, then the universe

is nearly FLRW [10]. However, this is not true. Making statements about the geom-

etry also requires assumptions about the spatial derivatives of the CMB temperature

field, and these assumptions are not satisfied in the real universe [60, 103, 105]. Ob-

servation of a nearly isotropic CMB sky does not imply that the universe is close to

FLRW.

Given that 〈Θ〉D = 3ȧD/aD, we obtain 1+z ≈ aD(t)
−1, the same relation between

expansion and redshift as in the FLRW case. This result depends on the fact that

the shear and the expansion rate enter linearly into the integral (4.1) along the null

geodesic. In contrast, the shear and the expansion rate enter quadratically into the

equations of motion (2.3)–(2.5) for the geometry, so variations do not cancel in the

average; instead we have the generally non-zero backreaction variable QD.

For the angular diameter distance, similar qualitative arguments give [103]

HD∂z̄
[

(1 + z̄)2HD ∂z̄D̄A

]

≈ −4πGN〈ρ〉DD̄A , (4.2)

where D̄A is the dominant part of the angular diameter distance with corrections to

the mean dropped, and similarly for the redshift: 1+ z̄ ≡ aD(t)
−1. (It is not entirely

clear that the angular deviation of the distance must necessarily be small [89].)

From the conservation of mass (2.9), it follows that 〈ρ〉D ∝ (1 + z̄)3. The

distance is therefore determined entirely by the average expansion rate HD(z) and
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the normalization of the density today, namely Ωm0. For a FLRWmodel with general

matter content, 〈ρ〉D in (4.2) would be replaced by ρ+p. Therefore, the equation for

the mean angular diameter distance in terms of HD(z) in a statistically homogeneous

and isotropic dust universe (with a slowly evolving distribution) is the same as in the

FLRW ΛCDM model. If backreaction were to produce exactly the same expansion

history as the ΛCDM model, the distance-redshift relation would therefore also be

identical. This is true even though the spatial curvature would be large, because the

spatial curvature affects the distance differently than in the FLRW case.

However, backreaction is not expected to produce an expansion history identical

to the ΛCDM model: if the expansion accelerates strongly, the acceleration may be

preceded by extra deceleration, and the acceleration cannot be eternal (unless the

rate of acceleration goes asymptotically to zero sufficiently rapidly). Therefore the

backreaction distance-redshift relation also differs from the ΛCDM model, although

it is shifted towards ΛCDM compared with a FLRW model with the same expansion

history as the backreaction model. The reason is that in any FLRW model apart

from ΛCDM, the equation for DA is modified not only by the mapping between the

affine parameter and the redshift (as described by H(z)), but also by the change of

the source term ρ+p, whereas in the backreaction case only the mapping between the

affine parameter and the redshift (i.e. HD(z)) changes. This feature could explain

why distance observations prefer a value close to −1 for the effective equation of

state.

Above, we assume that light is passing through a continuous distribution of

matter. However, it is not clear whether such an assumption is valid in the real

universe, in which matter is clumped on various scales, and it may be that a typical

light ray travels in vacuum without crossing any structures. This issue remains to

be completely understood [42,106,107]; for references on the effect of clumpiness on

light propagation, see [103, 107].

A related problem is that light propagation is usually considered in the geo-

metrical optics approximation, with infinitesimal light bundles. However, light wave

fronts have a finite extent, which is especially important if the matter distribution is

discrete on the relevant scales. Surface averaging of light fronts and its relation to

distances should thus be considered. A covariant formalism for averaging on differ-

ent slices of the past light cone was recently introduced [108]. However, because we

observe both the redshift and the angular position of sources, the relevant issue is

cancellations along the null geodesic, as discussed above.

4.2 Observational signatures of backreaction

In the FLRW model, there exists a definite relation between DA(z) and H(z), which

can be used as a general test of FLRW models [34]. If the distance and the expansion

rate are measured independently [24–26], we can check whether they satisfy the

FLRW relation. If they do not, the observations cannot be explained in terms of
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any four-dimensional FLRW model. Because the FLRW relationship between DA(z)

and H(z) depends on the spatial curvature, a test of the relation can be viewed as

a test of whether the spatial curvature is proportional to (1 + z)2. If backreaction

is significant, the spatial curvature divided by (1 + z)2 is non-constant for some

redshift range. This holds independently of the presence of dark energy or modified

gravity, because light propagation directly depends on the geometry of spacetime,

regardless of the equations of motion that determine it. The consequences of a

different curvature evolution have been analyzed in [101, 109].

The backreaction conjecture that the change in the average expansion rate at

small redshift is due to structure formation can be tested without a prediction for the

change in the expansion rate, simply by checking whether the measured DA(z) and

HD(z) satisfy (4.2). This relation, which violates the FLRW consistency condition

between expansion and distance, is a unique prediction of backreaction that distin-

guishes it from the FLRW model. However, the derivation of the relation should be

done more rigorously, and the expected magnitude and shape of the violation are

not known.

The redshift, as well as null geodesic shear and deflection [42], should be studied

in more detail. In particular, it would be interesting to quantitatively check that light

propagation in a statistically homogeneous and isotropic space with a slowly evolving

distribution of small structures can be described in terms of the average expansion

rate, and to characterize the corrections [42, 60, 103]. The small-scale pattern of the

CMB depends only on the angular diameter distance [17], but the effects on large

angular scales remain to be determined. Extending weak lensing analysis to the case

in which the geometry is not nearly FLRW is also needed for comparison with present

and upcoming data.

5. Conclusions

We discuss the backreaction conjecture, namely the possibility that structure forma-

tion changes the average expansion rate, spatial curvature and light propagation,

thereby eliminating the need for dark energy or modified gravity. The change in the

average properties due to structure formation is present in reality but is not taken

into account either in the FLRW model and its linear perturbations or Newtonian

non-linear models.

The basic mechanism of backreaction is simple and can be demonstrated in toy

models: because the universe is inhomogeneous, different regions expand at different

rates, so the fraction of volume in faster expanding regions can grow, and the average

expansion rate can rise. Structure formation has a preferred time of 10 billion years,

which agrees with the observed timescale for the change in the expansion rate, and

the amplitude of the change can also be understood from simple considerations.

However, the effect has not been quantified in a fully realistic model.
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Various things remain to be done before robust quantitative conclusions can be

drawn. If backreaction is significant, it cannot be understood simply as a change in

the FLRW background model. To analyze signals such as baryon acoustic oscillations

and other features in the distribution of large structure, we must develop perturbation

theory around a non-FLRW background, where the mean is the average of deviations

that have a large amplitude, but a small coherence length.

The treatment of light propagation also needs to be made more rigorous and

extended both to cover phenomena such as weak lensing in detail and to include

effects due to the discreteness of matter. The deviation of the relation between

distance and the expansion rate from the FLRW case is an important prediction,

which can be tested without a calculation of the average expansion rate. However,

the goal should be to derive the change in the average expansion rate with quantified

errors. In addition to statistical models, one way to address the question could be to

generalize N-body simulations to include the relevant relativistic degrees of freedom.

The backreaction conjecture is conservative in the sense that it does not involve

new fundamental physics, only neglected effects in non-linear GR. Before the effect

of structure formation on the average expansion rate is reliably quantified, we will

not know whether dark energy or modified gravity is needed. It is plausible that

backreaction can explain all of the observations, and even if the large-scale average

properties of the universe turn out to be close to the FLRW case, the corrections

may nevertheless be quantitatively important.
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Ø. Elgarøy and T. Multamäki, Bayesian analysis of Friedmannless cosmologies,

JCAP09(2006)002 [arXiv:astro-ph/0603053]
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