216 research outputs found
Dynamics of polydisperse irreversible adsorption: a pharmacological example
Many drug delivery systems suffer from undesirable interactions with the host immune system. It has been experimentally established that covalent attachment (irreversible adsorption) of suitable macromolecules to the surface of the drug carrier can reduce such undesirable interactions. A fundamental understanding of the adsorption process is still lacking. In this paper, the classical random irreversible adsorption model is generalized to capture certain essential processes involved in pharmacological applications, allowing for macromolecules of different sizes, partial overlapping of the tails of macromolecules, and the influence of reactions with the solvent on the adsorption process. Working in one dimension, an integro-differential evolution equation for the adsorption process is derived, and the asymptotic behavior of the surface area covered and the number of molecules attached to the surface are studied. Finally, equation-free dynamic renormalization tools are applied to study the asymptotically self-similar behavior of the adsorption statistics
Establishment of a positive-readout reporter system for siRNAs
The use of small interfering RNA molecules for therapeutic applications requires development of improved delivery systems, a process that would be facilitated by a non-invasive positive-readout mouse model for studying siRNA pharmacodynamics. Positive readout would yield better signal/noise ratios than existing negative-readout systems. We have engineered a positive-readout luciferase reporter system, activated by successful delivery of siRNA targeting the lac repressor. Co-transfection of a plasmid expressing lac repressor and a plasmid expressing firefly luciferase under the control of an RSV promoter, containing two lac operator sites, resulted in 5.7-fold lower luciferase activity than luciferase-encoding plasmid alone. Inhibition was reversed following addition of synthetic inducer, IPTG, which elevated luciferase expression to normal levels and confirmed functionality of the lac operon. Delivery of 1nM siRNA targeting lac repressor to repressor/reporter co-transfected cells was sufficient to fully restore luciferase expression to levels observed in the absence of repressor. Maximum expression was observed after 48hr, with a rapid decrease thereafter due to the short half life of luciferase. The luciferase positive-readout reporter system is therefore a dynamic indicator of successful RNAi delivery in vitro and could be adapted to generate a transgenic mouse capable of reporting RNAi activity non-invasively in vivo
Cytoplasmic expression systems triggered by mRNA yield increased gene expression in post-mitotic neurons
Non-viral vectors are promising vehicles for gene therapy but delivery of plasmid DNA to post-mitotic cells is challenging as nuclear entry is particularly inefficient. We have developed and evaluated a hybrid mRNA/DNA system designed to bypass the nuclear barrier to transfection and facilitate cytoplasmic gene expression. This system, based on co-delivery of mRNA(A64) encoding for T7 RNA polymerase (T7 RNAP) with a T7-driven plasmid, produced between 10- and 2200-fold higher gene expression in primary dorsal root ganglion neuronal (DRGN) cultures isolated from SpragueâDawley rats compared to a cytomegalovirus (CMV)-driven plasmid, and 30-fold greater expression than the enhanced T7-based autogene plasmid pR011. Cell-free assays and in vitro transfections highlighted the versatility of this system with small quantities of T7 RNAP mRNA required to mediate expression at levels that were significantly greater than with the T7-driven plasmid alone or supplemented with T7 RNAP protein. We have also characterized a number of parameters, such as mRNA structure, intracellular stability and persistence of each nucleic acid component that represent important factors in determining the transfection efficiency of this hybrid expression system. The results from this study demonstrate that co-delivery of mRNA is a promising strategy to yield increased expression with plasmid DNA, and represents an important step towards improving the capability of non-viral vectors to mediate efficient gene transfer in cell types, such as in DRGN, where the nuclear membrane is a significant barrier to transfection
Feminist phenomenology and the woman in the running body
Modern phenomenology, with its roots in Husserlian philosophy, has been taken up and utilised in a myriad of ways within different disciplines, but until recently has remained relatively under-used within sports studies. A corpus of sociological-phenomenological work is now beginning to develop in this domain, alongside a longer standing literature in feminist phenomenology. These specific social-phenomenological forms explore the situatedness of lived-body experience within a particular social structure. After providing a brief overview of key strands of phenomenology, this article considers some of the ways in which sociological, and particularly feminist phenomenology, might be used to analyse female sporting embodiment. For illustrative purposes, data from an autophenomenographic project on female distance running are also included, in order briefly to demonstrate the application of phenomenology within sociology, as both theoretical framework and methodological approach
External beam radiation therapy and enadenotucirev: inhibition of the DDR and mechanisms of radiation-mediated virus increase
Ionising radiation causes cell death through the induction of DNA damage, particularly double-stranded DNA (dsDNA) breaks. Evidence suggests that adenoviruses inhibit proteins involved in the DNA damage response (DDR) to prevent recognition of double-stranded viral DNA genomes as cellular dsDNA breaks. We hypothesise that combining adenovirus treatment with radiotherapy has the potential for enhancing tumour-specific cytotoxicity through inhibition of the DDR and augmentation of virus production. We show that EnAd, an Ad3/Ad11p chimeric oncolytic adenovirus currently being trialled in colorectal and other cancers, targets the DDR pathway at a number of junctures. Infection is associated with a decrease in irradiation-induced 53BP1 and Rad51 foci formation, and in total DNA ligase IV levels. We also demonstrate a radiation-associated increase in EnAd production in vitro and in a pilot in vivo experiment. Given the current limitations of in vitro techniques in assessing for synergy between these treatments, we adapted the plaque assay to allow monitoring of viral plaque size and growth and utilised the xCELLigence cell adhesion assay to measure cytotoxicity. Our study provides further evidence on the interaction between adenovirus and radiation in vitro and in vivo and suggests these have at least an additive, and possibly a synergistic, impact on cytotoxicity
Association between the timing of childhood adversity and epigenetic patterns across childhood and adolescence:findings from the Avon Longitudinal Study of Parents and Children (ALSPAC) prospective cohort
BACKGROUND: Childhood adversity is a potent determinant of health across development and is associated with altered DNA methylation signatures, which might be more common in children exposed during sensitive periods in development. However, it remains unclear whether adversity has persistent epigenetic associations across childhood and adolescence. We aimed to examine the relationship between time-varying adversity (defined through sensitive period, accumulation of risk, and recency life course hypotheses) and genome-wide DNA methylation, measured three times from birth to adolescence, using data from a prospective, longitudinal cohort study.METHODS: We first investigated the relationship between the timing of exposure to childhood adversity between birth and 11 years and blood DNA methylation at age 15 years in the Avon Longitudinal Study of Parents and Children (ALSPAC) prospective cohort study. Our analytic sample included ALSPAC participants with DNA methylation data and complete childhood adversity data between birth and 11 years. We analysed seven types of adversity (caregiver physical or emotional abuse, sexual or physical abuse [by anyone], maternal psychopathology, one-adult households, family instability, financial hardship, and neighbourhood disadvantage) reported by mothers five to eight times between birth and 11 years. We used the structured life course modelling approach (SLCMA) to identify time-varying associations between childhood adversity and adolescent DNA methylation. Top loci were identified using an R 2 threshold of 0·035 (ie, â„3·5% of DNA methylation variance explained by adversity). We attempted to replicate these associations using data from the Raine Study and Future of Families and Child Wellbeing Study (FFCWS). We also assessed the persistence of adversity-DNA methylation associations we previously identified from age 7 blood DNA methylation into adolescence and the influence of adversity on DNA methylation trajectories from ages 0-15 years. FINDINGS: Of 13â988 children in the ALSPAC cohort, 609-665 children (311-337 [50-51%] boys and 298-332 [49-50%] girls) had complete data available for at least one of the seven childhood adversities and DNA methylation at 15 years. Exposure to adversity was associated with differences in DNA methylation at 15 years for 41 loci (R 2 â„0·035). Sensitive periods were the most often selected life course hypothesis by the SLCMA. 20 (49%) of 41 loci were associated with adversities occurring between age 3 and 5 years. Exposure to one-adult households was associated with differences in DNA methylation at 20 [49%] of 41 loci, exposure to financial hardship was associated with changes at nine (22%) loci, and physical or sexual abuse was associated with changes at four (10%) loci. We replicated the direction of associations for 18 (90%) of 20 loci associated with exposure to one-adult household using adolescent blood DNA methylation from the Raine Study and 18 (64%) of 28 loci using saliva DNA methylation from the FFCWS. The directions of effects for 11 one-adult household loci were replicated in both cohorts. Differences in DNA methylation at 15 years were not present at 7 years and differences identified at 7 years were no longer apparent by 15 years. We also identified six distinct DNA methylation trajectories from these patterns of stability and persistence. INTERPRETATION: These findings highlight the time-varying effect of childhood adversity on DNA methylation profiles across development, which might link exposure to adversity to potential adverse health outcomes in children and adolescents. If replicated, these epigenetic signatures could ultimately serve as biological indicators or early warning signs of initiated disease processes, helping identify people at greater risk for the adverse health consequences of childhood adversity.FUNDING: Canadian Institutes of Health Research, Cohort and Longitudinal Studies Enhancement Resources, EU's Horizon 2020, US National Institute of Mental Health.</p
Cohesin, condensin, and the intramolecular centromere loop together generate the mitotic chromatin spring
During mitosis, spindle microtubule force is balanced by the combined activities of the cohesin and condensin SMC complexes and intramolecular pericentric chromatin loops
Physician Experiences and Understanding of Genomic Sequencing in Oncology
The amount of information produced by genomic sequencing is vast, technically complicated, and can be difficult to interpret. Appropriately tailoring genomic information for nonĂą geneticists is an essential next step in the clinical use of genomic sequencing. To initiate development of a framework for genomic results communication, we conducted eighteen qualitative interviews with oncologists who had referred adult cancer patients to a matched tumorĂą normal tissue genomic sequencing study. In our qualitative analysis, we found varied levels of clinician knowledge relating to sequencing technology, the scope of the tumor genomic sequencing study, and incidental germline findings. Clinicians expressed a perceived need for more genetics education. Additionally, they had a variety of suggestions for improving results reports and possible resources to aid in results interpretation. Most clinicians felt genetic counselors were needed when incidental germline findings were identified. Our research suggests that more consistent genetics education is imperative in ensuring the proper utilization of genomic sequencing in cancer care. Clinician suggestions for results interpretation resources and results report modifications could be used to improve communication. CliniciansĂą perceived need to involve genetic counselors when incidental germline findings were found suggests genetic specialists could play a critical role in ensuring patients receive appropriate followĂą up.Peer Reviewedhttps://deepblue.lib.umich.edu/bitstream/2027.42/147187/1/jgc40187.pd
- âŠ