11 research outputs found

    Displacement of native Patagonian freshwater silverside populations (Odontesthes hatcheri, Atherinopsidae) by introgressive hybridization with introduced O. bonariensis

    No full text
    The Patagonian silverside Odontesthes hatcheri is a native fish restricted to streams and lakes of Patagonia (Argentina and Chile). Stocking programs to enhance recreational fisheries in man-made reservoirs have introduced a nonnative, closely-related species (the pejerrey O. bonariensis) in Patagonia almost a century ago, and yet little is known about the invasiveness of this species. To evaluate the impact of these introductions we analyze genetic data (microsatellite markers and mitochondrial DNA) to quantify the incidence of hybridization between these two species and assess potential effects on native population structure. Phylogeographic analyses reveal weak geographic differentiation among populations of O. hatcheri, in agreement with previous studies for other freshwater fishes in Patagonia strongly influenced by Quaternary glaciations and hydrographic basin changes since the last glaciation. However, many populations have unique genetic pools. In several areas, introductions resulted in extensive hybridization, with high frequencies of F2 and backcrossed hybrids in natural populations, and in some cases O. bonariensis has completely displaced the native populations. The negative impact of these introductions on native populations is correlated to temperature, a critical parameter in the face of global warming, suggesting that invasiveness of O. bonariensis may increase in the future. Our results advise against continuing stocking programs to preserve the integrity of natural populations of the Patagonian silverside.Fil: Rueda, Eva Carolina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional del Litoral; ArgentinaFil: Mullaney, Kerry A.. The George Washington University; Estados UnidosFil: Conte-Grand, Cecilia. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Patagonia Norte. Instituto de Investigaciones en Biodiversidad y Medioambiente. Universidad Nacional del Comahue. Centro Regional Universidad Bariloche. Instituto de Investigaciones en Biodiversidad y Medioambiente; ArgentinaFil: Habit, Evelyn M.. Universidad de Concepción and Centro de Investigaciones en Ecosistemas Patagónicos; ChileFil: Cussac, Victor Enrique. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Patagonia Norte. Instituto de Investigaciones en Biodiversidad y Medioambiente. Universidad Nacional del Comahue. Centro Regional Universidad Bariloche. Instituto de Investigaciones en Biodiversidad y Medioambiente; ArgentinaFil: Ortí, Guillermo. The George Washington University; Estados Unido

    Malignant undifferentiated epithelioid neoplasms with MAML2 rearrangements: A clinicopathologic study of seven cases demonstrating a heterogenous entity

    Get PDF
    Among mesenchymal tumors, MAML2 gene rearrangements have been described in a subset of composite hemangioendothelioma and myxoinflammatory fibroblastic sarcoma (MIFS). However, we have recently encountered MAML2-related fusions in a group of seven undifferentiated malignant epithelioid neoplasms that do not fit well to any established pathologic entities. The patients included five males and two female, aged 41–71 years old (median 65 years). The tumors involved the deep soft tissue of extremities (hip, knee, arm, hand), abdominal wall, and the retroperitoneum. Microscopically, the tumors consisted of solid sheets of atypical epithelioid to histiocytoid cells with abundant cytoplasm. Prominent mitotic activity and necrosis were present in 4 cases. In 3 cases, the cells displayed hyperchromatic nuclei or conspicuous macronucleoli, and were admixed with background histiocytoid cells and a lymphoplasmacytic infiltrate. By immunohistochemistry (IHC), the neoplastic cells had a nonspecific phenotype. On targeted RNA sequencing, MAML2 was the 3′ partner and fused to YAP1 (4 cases), ARHGAP42 (2 cases), and ENDOD1 (1 case). Two cases with YAP1::MAML2 harbored concurrent RAF kinase fusions (RBMS3::RAF1 and AGK::BRAF, respectively). In 2 cases with targeted DNA sequencing, mutations in TP53, RB1 and PTEN were detected in 1 case, and PDGFRB mutations, CCNE1 amplifications and CDKN2A/2B deletion were detected in another case, which showed strong and diffuse PDGFRB expression by IHC. Of the 4 cases with detailed clinical history (median follow-up period 8 months), three developed distant metastatic disease (one of which died of disease); one case remained free of disease 3 years following surgical excision. In conclusion, we describe a heterogeneous series of MAML2-rearranged undifferentiated malignant epithelioid neoplasms, a subset of which may overlap with a recently described MIFS variant with YAP1::MAML2 fusions, further expanding the clinicopathologic spectrum of mesenchymal neoplasms with recurrent MAML2 gene rearrangements

    Oncogenic TRK fusions are amenable to inhibition in hematologic malignancies

    No full text
    Rearrangements involving the neurotrophic receptor kinase genes ( NTRK1, NTRK2, and NTRK3 ; hereafter referred to as TRK) produce oncogenic fusions in a wide variety of cancers in adults and children. Although TRK fusions occur in fewer than 1% of all solid tumors, inhibition of TRK results in profound therapeutic responses, resulting in Breakthrough Therapy FDA approval of the TRK inhibitor larotrectinib for adult and pediatric patients with solid tumors, regardless of histology. In contrast to solid tumors, the frequency of TRK fusions and the clinical effects of targeting TRK in hematologic malignancies are unknown. Here, through an evaluation for TRK fusions across more than 7,000 patients with hematologic malignancies, we identified TRK fusions in acute lymphoblastic leukemia (ALL), acute myeloid leukemia (AML), histiocytosis, multiple myeloma, and dendritic cell neoplasms. Although TRK fusions occurred in only 0.1% of patients (8 of 7,311 patients), they conferred responsiveness to TRK inhibition in vitro and in vivo in a patient-derived xenograft and a corresponding AML patient with ETV6-NTRK2 fusion. These data identify that despite their individual rarity, collectively, TRK fusions are present in a wide variety of hematologic malignancies and predict clinically significant therapeutic responses to TRK inhibition

    Down Syndrome Fibroblast Model of Alzheimer-Related Endosome Pathology : Accelerated Endocytosis Promotes Late Endocytic Defects

    No full text
    Endocytic dysfunction is an early pathological change in Alzheimer’s disease (AD) and Down’s syndrome (DS). Using primary fibroblasts from DS individuals, we explored the interactions among endocytic compartments that are altered in AD and assessed their functional consequences in AD pathogenesis. We found that, like neurons in both AD and DS brains, DS fibroblasts exhibit increased endocytic uptake, fusion, and recycling, and trafficking of lysosomal hydrolases to rab5-positive early endosomes. Moreover, late endosomes identified using antibodies to rab7 and lysobisphosphatidic acid increased in number and appeared as enlarged, perinuclear vacuoles, resembling those in neurons of both AD and DS brains. In control fibroblasts, similar enlargement of rab5-, rab7-, and lysobisphosphatidic acid-positive endosomes was induced when endocytosis and endosomal fusion were increased by expression of either a rab5 or an active rab5 mutant, suggesting that persistent endocytic activation results in late endocytic dysfunction. Conversely, expression of a rab5 mutant that inhibits endocytic uptake reversed early and late endosomal abnormalities in DS fibroblasts. Our results indicate that DS fibroblasts recapitulate the neuronal endocytic dysfunction of AD and DS, suggesting that increased trafficking from early endosomes can account, in part, for downstream endocytic perturbations that occur in neurons in both AD and DS brains
    corecore