1,518 research outputs found

    Large transport landing characteristics as simulated in flight and on the ground

    Get PDF
    Comparison of theoretical and simulated low speed landing characteristics for large transport aircraft

    The effect of small-amplitude time-dependent changes to the surface morphology of a sphere

    Get PDF
    Typical approaches to manipulation of flow separation employ passive means or active techniques such as blowing and suction or plasma acceleration. Here it is demonstrated that the flow can be significantly altered by making small changes to the shape of the surface. A proof of concept experiment is performed using a very simple time-dependent perturbation to the surface of a sphere: a roughness element of 1% of the sphere diameter is moved azimuthally around a sphere surface upstream of the uncontrolled laminar separation point, with a rotational frequency as large as the vortex shedding frequency. A key finding is that the non-dimensional time to observe a large effect on the lateral force due to the perturbation produced in the sphere boundary layers as the roughness moves along the surface is ˆt =tU_(∞)/D ≈4. This slow development allows the moving element to produce a tripped boundary layer over an extended region. It is shown that a lateral force can be produced that is as large as the drag. In addition, simultaneous particle image velocimetry and force measurements reveal that a pair of counter-rotating helical vortices are produced in the wake, which have a significant effect on the forces and greatly increase the Reynolds stresses in the wake. The relatively large perturbation to the flow-field produced by the small surface disturbance permits the construction of a phase-averaged, three-dimensional (two-velocity component) wake structure from measurements in the streamwise/radial plane. The vortical structure arising due to the roughness element has implications for flow over a sphere with a nominally smooth surface or distributed roughness. In addition, it is shown that oscillating the roughness element, or shaping its trajectory, can produce a mean lateral force

    The Economics of Auto Safety

    Get PDF

    The Economics of Auto Safety

    Get PDF

    On Polyhedral Projection and Parametric Programming

    Get PDF
    This paper brings together two fundamental topics: polyhedral projection and parametric linear programming. First, it is shown that, given a parametric linear program (PLP), a polyhedron exists whose projection provides the solution to the PLP. Second, the converse is tackled and it is shown how to formulate a PLP whose solution is the projection of an appropriately defined polyhedron described as the intersection of a finite number of halfspaces. The input to one operation can be converted to an input of the other operation and the resulting output can be converted back to the desired form in polynomial time—this implies that algorithms for computing projections or methods for solving parametric linear programs can be applied to either problem clas

    Reachability analysis of discrete-time systems with disturbances

    No full text
    Published versio
    corecore