9,156 research outputs found

    Errors in kinematic distances and our image of the Milky Way Galaxy

    Get PDF
    Errors in the kinematic distances, under the assumption of circular gas orbits, were estimated by performing synthetic observations of a model disk galaxy. It was found that the error is < 0.5 kpc for most of the disk when the measured rotation curve was used, but larger if the real rotation curve is applied. In both cases, the error is significantly larger at the positions of the spiral arms. The error structure is such that, when kinematic distances are used to develope a picture of the large scale density distribution, the most significant features of the numerical model are significantly distorted or absent, while spurious structure appears. By considering the full velocity field in the calculation of the kinematic distances, most of the original density structures can be recovered.Comment: Accepted for publication in A

    The Advantage of Increased Resolution in the Study of Quasar Absorption Systems

    Get PDF
    We compare a new R = 120,000 spectrum of PG1634+706 (z_QSO = 1.337,m_V = 14.9) obtained with the HDS instrument on Subaru to a R = 45, 000 spectrum obtained previously with HIRES/Keck. In the strong MgII system at z = 0.9902 and the multiple cloud, weak MgII system at z = 1.0414, we find that at the higher resolution, additional components are resolved in a blended profile. We find that two single-cloud weak MgII absorbers were already resolved at R = 45,000, to have b = 2 - 4 km/s. The narrowest line that we measure in the R = 120, 000 spectrum is a component of the Galactic NaI absorption, with b = 0.90+/-0.20 km/s. We discuss expectations of similarly narrow lines in various applications, including studies of DLAs, the MgI phases of strong MgII absorbers, and high velocity clouds. By applying Voigt profile fitting to synthetic lines, we compare the consistency with which line profile parameters can be accurately recovered at R = 45,000 and R = 120,000. We estimate the improvement gained from superhigh resolution in resolving narrowly separated velocity components in absorption profiles. We also explore the influence of isotope line shifts and hyperfine splitting in measurements of line profile parameters, and the spectral resolution needed to identify these effects. Super high resolution spectra of quasars, which will be routinely possible with 20-meter class telescopes, will lead to greater sensitivity for absorption line surveys, and to determination of more accurate physical conditions for cold phases of gas in various environments.Comment: To appear in AJ. Paper with better resolution images available at http://www.astro.psu.edu/users/anand/superhigh.AJ.pd

    Kerr-Schild Symmetries

    Get PDF
    We study continuous groups of generalized Kerr-Schild transformations and the vector fields that generate them in any n-dimensional manifold with a Lorentzian metric. We prove that all these vector fields can be intrinsically characterized and that they constitute a Lie algebra if the null deformation direction is fixed. The properties of these Lie algebras are briefly analyzed and we show that they are generically finite-dimensional but that they may have infinite dimension in some relevant situations. The most general vector fields of the above type are explicitly constructed for the following cases: any two-dimensional metric, the general spherically symmetric metric and deformation direction, and the flat metric with parallel or cylindrical deformation directions.Comment: 15 pages, no figures, LaTe

    PD-L1 testing for lung cancer in the UK: recognizing the challenges for implementation.

    Get PDF
    A new approach to the management of non-small-cell lung cancer (NSCLC) has recently emerged that works by manipulating the immune checkpoint controlled by programmed death receptor 1 (PD-1) and its ligand programmed death ligand 1 (PD-L1). Several drugs targeting PD-1 (pembrolizumab and nivolumab) or PD-L1 (atezolizumab, durvalumab, and avelumab) have been approved or are in the late stages of development. Inevitably, the introduction of these drugs will put pressure on healthcare systems, and there is a need to stratify patients to identify those who are most likely to benefit from such treatment. There is evidence that responsiveness to PD-1 inhibitors may be predicted by expression of PD-L1 on neoplastic cells. Hence, there is considerable interest in using PD-L1 immunohistochemical staining to guide the use of PD-1-targeted treatments in patients with NSCLC. This article reviews the current knowledge about PD-L1 testing, and identifies current research requirements. Key factors to consider include the source and timing of sample collection, pre-analytical steps (sample tracking, fixation, tissue processing, sectioning, and tissue prioritization), analytical decisions (choice of biomarker assay/kit and automated staining platform, with verification of standardized assays or validation of laboratory-devised techniques, internal and external quality assurance, and audit), and reporting and interpretation of the results. This review addresses the need for integration of PD-L1 immunohistochemistry with other tests as part of locally agreed pathways and protocols. There remain areas of uncertainty, and guidance should be updated regularly as new information becomes available

    Does the Milky Way have a Maximal Disk?

    Get PDF
    The Milky Way is often considered to be the best example of a spiral for which the dark matter not only dominates the outer kinematics, but also plays a major dynamical role in the inner galaxy: the Galactic disk is therefore said to be ``sub-maximal.'' This conclusion is important to the understanding of the evolution of galaxies and the viability of particular dark matter models. The Galactic evidence rests on a number of structural and kinematic measurements, many of which have recently been revised. The new constraints indicate not only that the Galaxy is a more typical member of its class (Sb-Sc spirals) than previously thought, but also require a re-examination of the question of whether or not the Milky Way disk is maximal. By applying to the Milky Way the same definition of ``maximal disk'' that is applied to external galaxies, it is shown that the new observational constraints are consistent with a Galactic maximal disk of reasonable M/LM/L. In particular, the local disk column can be substantially less than the oft-quoted required \Sigma_{\odot} \approx 100 \msolar pc^{-2} - as low as 40 \msolar pc^{-2} in the extreme case - and still be maximal, in the sense that the dark halo provides negligible rotation support in the inner Galaxy. This result has possible implications for any conclusion that rests on assumptions about the potentials of the Galactic disk or dark halo, and in particular for the interpretation of microlensing results along both LMC and bulge lines of sight.Comment: Accepted for publication in The Astrophysical Journal. 23 Latex-generated pages, one (new) table, three figures (two new). A few additions to the bibliography, an expanded discussion, and slight quantitative changes, none of which affect the conclusion

    Initial data for two Kerr-like black holes

    Full text link
    We prove the existence of a family of initial data for the Einstein vacuum equation which can be interpreted as the data for two Kerr-like black holes in arbitrary location and with spin in arbitrary direction. When the mass parameter of one of them is zero, this family reduces exactly to the Kerr initial data. The existence proof is based on a general property of the Kerr metric which can be used in other constructions as well. Further generalizations are also discussed.Comment: revtex, 5 pages, no figure

    Universality in fully developed turbulence

    Get PDF
    We extend the numerical simulations of She et al. [Phys.\ Rev.\ Lett.\ 70, 3251 (1993)] of highly turbulent flow with 1515 \le Taylor-Reynolds number Reλ200Re_\lambda\le 200 up to Reλ45000Re_\lambda \approx 45000, employing a reduced wave vector set method (introduced earlier) to approximately solve the Navier-Stokes equation. First, also for these extremely high Reynolds numbers ReλRe_\lambda, the energy spectra as well as the higher moments -- when scaled by the spectral intensity at the wave number kpk_p of peak dissipation -- can be described by {\it one universal} function of k/kpk/k_p for all ReλRe_\lambda. Second, the ISR scaling exponents ζm\zeta_m of this universal function are in agreement with the 1941 Kolmogorov theory (the better, the large ReλRe_\lambda is), as is the ReλRe_\lambda dependence of kpk_p. Only around kpk_p viscous damping leads to slight energy pileup in the spectra, as in the experimental data (bottleneck phenomenon).Comment: 14 pages, Latex, 5 figures (on request), 3 tables, submitted to Phys. Rev.

    Galactic Kinematics Towards the South Galactic Pole. First Results from the Yale-San Juan Southern Proper-Motion Program

    Get PDF
    The predictions from a Galactic Structure and Kinematic model code are compared to the color counts and absolute proper-motions derived from the Southern Proper-Motion survey covering more than 700 deg2\deg^2 toward the South Galactic Pole in the range 9<BJ199 < B_{\rm J} \le 19. The theoretical assumptions and associated computational procedures, the geometry for the kinematic model, and the adopted parameters are presented in detail and compared to other Galactic Kinematic models of its kind. The data to which the model is compared consists of more than 30,000 randomly selected stars, and it is best fit by models with a solar peculiar motion of +5 km s1^{-1} in the V-component (pointing in the direction of Galactic rotation), a large LSR speed of 270 km s1^{-1}, and a (disk) velocity ellipsoid that always points towards the Galactic center. The absolute proper-motions in the U-component indicate a solar peculiar motion of 11.0±1.511.0 \pm 1.5 km s1^{-1}, with no need for a local expansion or contraction term. The fainter absolute motions show an indication that the thick-disk must exhibit a rather steep velocity gradient of about -36 km s1^{-1} kpc1^{-1} with respect to the LSR. We are not able to set constraints on the overall rotation for the halo, nor on the thick-disk or halo velocity dispersions. Some substructure in the U & V proper-motions could be present in the brighter bins 10<BJ<1310 < B_{\rm J} < 13, and it might be indicative of (disk) moving groups.Comment: 24 double-column pages, 12 tables, AAS Latex macros v4.0, 19 B&W figures, 1 color figure. Accepted for publication on The Astronomical Journa

    The Heavy Element Enrichment of Lyman alpha Clouds in the Virgo Supercluster

    Full text link
    Using high S/N STIS echelle spectra (FWHM=7 km/s) of 3C 273, we constrain the metallicities of two Lya clouds in the vicinity of the Virgo cluster. We detect C II, Si II, and Si III absorption lines in the Lya absorber at z = 0.00530. Previous observations with FUSE have revealed Ly beta - Ly theta lines at this redshift, thereby accurately constraining N(H I). We model the ionization of the gas and derive [C/H] = -1.2^{+0.3}_{-0.2}, [Si/C] = 0.2+/-0.1, and log n_{H} = -2.8+/-0.3. The model implies a small absorber thickness, ~70 pc, and thermal pressure p/k ~ 40 cm^{-3} K. It is most likely that the absorber is pressure confined by an external medium because gravitational confinement would require a very high ratio of dark matter to baryonic matter. Based on Milky Way sight lines in which carbon and silicon abundances have been reliably measured in the same interstellar cloud (including new measurements presented herein), we argue that the overabundance of Si relative to C is not due to dust depletion. Instead, this probably indicates that the gas has been predominately enriched by Type II supernovae. Such enrichment is most plausibly provided by an unbound galactic wind, given the absence of galaxies within a projected distance of 100 kpc and the presence of galaxies capable of driving a wind at larger distances. We also constrain the metallicity and physical conditions of the Virgo absorber at z = 0.00337 based on detections of O VI and H I and an upper limit on C IV. If this absorber is collisionally ionized, the O VI/C IV limit requires T > 10^{5.3} K. For either collisional ionization or photoionization, we find that [O/H] > -2.0 at z = 0.00337.Comment: Final Ap.J. versio
    corecore