9,156 research outputs found
Errors in kinematic distances and our image of the Milky Way Galaxy
Errors in the kinematic distances, under the assumption of circular gas
orbits, were estimated by performing synthetic observations of a model disk
galaxy. It was found that the error is < 0.5 kpc for most of the disk when the
measured rotation curve was used, but larger if the real rotation curve is
applied. In both cases, the error is significantly larger at the positions of
the spiral arms. The error structure is such that, when kinematic distances are
used to develope a picture of the large scale density distribution, the most
significant features of the numerical model are significantly distorted or
absent, while spurious structure appears. By considering the full velocity
field in the calculation of the kinematic distances, most of the original
density structures can be recovered.Comment: Accepted for publication in A
The Advantage of Increased Resolution in the Study of Quasar Absorption Systems
We compare a new R = 120,000 spectrum of PG1634+706 (z_QSO = 1.337,m_V =
14.9) obtained with the HDS instrument on Subaru to a R = 45, 000 spectrum
obtained previously with HIRES/Keck. In the strong MgII system at z = 0.9902
and the multiple cloud, weak MgII system at z = 1.0414, we find that at the
higher resolution, additional components are resolved in a blended profile. We
find that two single-cloud weak MgII absorbers were already resolved at R =
45,000, to have b = 2 - 4 km/s. The narrowest line that we measure in the R =
120, 000 spectrum is a component of the Galactic NaI absorption, with b =
0.90+/-0.20 km/s. We discuss expectations of similarly narrow lines in various
applications, including studies of DLAs, the MgI phases of strong MgII
absorbers, and high velocity clouds. By applying Voigt profile fitting to
synthetic lines, we compare the consistency with which line profile parameters
can be accurately recovered at R = 45,000 and R = 120,000. We estimate the
improvement gained from superhigh resolution in resolving narrowly separated
velocity components in absorption profiles. We also explore the influence of
isotope line shifts and hyperfine splitting in measurements of line profile
parameters, and the spectral resolution needed to identify these effects. Super
high resolution spectra of quasars, which will be routinely possible with
20-meter class telescopes, will lead to greater sensitivity for absorption line
surveys, and to determination of more accurate physical conditions for cold
phases of gas in various environments.Comment: To appear in AJ. Paper with better resolution images available at
http://www.astro.psu.edu/users/anand/superhigh.AJ.pd
Kerr-Schild Symmetries
We study continuous groups of generalized Kerr-Schild transformations and the
vector fields that generate them in any n-dimensional manifold with a
Lorentzian metric. We prove that all these vector fields can be intrinsically
characterized and that they constitute a Lie algebra if the null deformation
direction is fixed. The properties of these Lie algebras are briefly analyzed
and we show that they are generically finite-dimensional but that they may have
infinite dimension in some relevant situations. The most general vector fields
of the above type are explicitly constructed for the following cases: any
two-dimensional metric, the general spherically symmetric metric and
deformation direction, and the flat metric with parallel or cylindrical
deformation directions.Comment: 15 pages, no figures, LaTe
PD-L1 testing for lung cancer in the UK: recognizing the challenges for implementation.
A new approach to the management of non-small-cell lung cancer (NSCLC) has recently emerged that works by manipulating the immune checkpoint controlled by programmed death receptor 1 (PD-1) and its ligand programmed death ligand 1 (PD-L1). Several drugs targeting PD-1 (pembrolizumab and nivolumab) or PD-L1 (atezolizumab, durvalumab, and avelumab) have been approved or are in the late stages of development. Inevitably, the introduction of these drugs will put pressure on healthcare systems, and there is a need to stratify patients to identify those who are most likely to benefit from such treatment. There is evidence that responsiveness to PD-1 inhibitors may be predicted by expression of PD-L1 on neoplastic cells. Hence, there is considerable interest in using PD-L1 immunohistochemical staining to guide the use of PD-1-targeted treatments in patients with NSCLC. This article reviews the current knowledge about PD-L1 testing, and identifies current research requirements. Key factors to consider include the source and timing of sample collection, pre-analytical steps (sample tracking, fixation, tissue processing, sectioning, and tissue prioritization), analytical decisions (choice of biomarker assay/kit and automated staining platform, with verification of standardized assays or validation of laboratory-devised techniques, internal and external quality assurance, and audit), and reporting and interpretation of the results. This review addresses the need for integration of PD-L1 immunohistochemistry with other tests as part of locally agreed pathways and protocols. There remain areas of uncertainty, and guidance should be updated regularly as new information becomes available
Does the Milky Way have a Maximal Disk?
The Milky Way is often considered to be the best example of a spiral for
which the dark matter not only dominates the outer kinematics, but also plays a
major dynamical role in the inner galaxy: the Galactic disk is therefore said
to be ``sub-maximal.'' This conclusion is important to the understanding of the
evolution of galaxies and the viability of particular dark matter models. The
Galactic evidence rests on a number of structural and kinematic measurements,
many of which have recently been revised. The new constraints indicate not only
that the Galaxy is a more typical member of its class (Sb-Sc spirals) than
previously thought, but also require a re-examination of the question of
whether or not the Milky Way disk is maximal. By applying to the Milky Way the
same definition of ``maximal disk'' that is applied to external galaxies, it is
shown that the new observational constraints are consistent with a Galactic
maximal disk of reasonable . In particular, the local disk column can be
substantially less than the oft-quoted required \Sigma_{\odot} \approx 100
\msolar pc^{-2} - as low as 40 \msolar pc^{-2} in the extreme case - and
still be maximal, in the sense that the dark halo provides negligible rotation
support in the inner Galaxy. This result has possible implications for any
conclusion that rests on assumptions about the potentials of the Galactic disk
or dark halo, and in particular for the interpretation of microlensing results
along both LMC and bulge lines of sight.Comment: Accepted for publication in The Astrophysical Journal. 23
Latex-generated pages, one (new) table, three figures (two new). A few
additions to the bibliography, an expanded discussion, and slight
quantitative changes, none of which affect the conclusion
Initial data for two Kerr-like black holes
We prove the existence of a family of initial data for the Einstein vacuum
equation which can be interpreted as the data for two Kerr-like black holes in
arbitrary location and with spin in arbitrary direction. When the mass
parameter of one of them is zero, this family reduces exactly to the Kerr
initial data. The existence proof is based on a general property of the Kerr
metric which can be used in other constructions as well. Further
generalizations are also discussed.Comment: revtex, 5 pages, no figure
Universality in fully developed turbulence
We extend the numerical simulations of She et al. [Phys.\ Rev.\ Lett.\ 70,
3251 (1993)] of highly turbulent flow with Taylor-Reynolds number
up to , employing a reduced wave
vector set method (introduced earlier) to approximately solve the Navier-Stokes
equation. First, also for these extremely high Reynolds numbers ,
the energy spectra as well as the higher moments -- when scaled by the spectral
intensity at the wave number of peak dissipation -- can be described by
{\it one universal} function of for all . Second, the ISR
scaling exponents of this universal function are in agreement with
the 1941 Kolmogorov theory (the better, the large is), as is the
dependence of . Only around viscous damping leads to
slight energy pileup in the spectra, as in the experimental data (bottleneck
phenomenon).Comment: 14 pages, Latex, 5 figures (on request), 3 tables, submitted to Phys.
Rev.
Galactic Kinematics Towards the South Galactic Pole. First Results from the Yale-San Juan Southern Proper-Motion Program
The predictions from a Galactic Structure and Kinematic model code are
compared to the color counts and absolute proper-motions derived from the
Southern Proper-Motion survey covering more than 700 toward the South
Galactic Pole in the range . The theoretical assumptions
and associated computational procedures, the geometry for the kinematic model,
and the adopted parameters are presented in detail and compared to other
Galactic Kinematic models of its kind. The data to which the model is compared
consists of more than 30,000 randomly selected stars, and it is best fit by
models with a solar peculiar motion of +5 km s in the V-component
(pointing in the direction of Galactic rotation), a large LSR speed of 270 km
s, and a (disk) velocity ellipsoid that always points towards the
Galactic center. The absolute proper-motions in the U-component indicate a
solar peculiar motion of km s, with no need for a local
expansion or contraction term. The fainter absolute motions show an indication
that the thick-disk must exhibit a rather steep velocity gradient of about -36
km s kpc with respect to the LSR. We are not able to set
constraints on the overall rotation for the halo, nor on the thick-disk or halo
velocity dispersions. Some substructure in the U & V proper-motions could be
present in the brighter bins , and it might be indicative
of (disk) moving groups.Comment: 24 double-column pages, 12 tables, AAS Latex macros v4.0, 19 B&W
figures, 1 color figure. Accepted for publication on The Astronomical Journa
The Heavy Element Enrichment of Lyman alpha Clouds in the Virgo Supercluster
Using high S/N STIS echelle spectra (FWHM=7 km/s) of 3C 273, we constrain the
metallicities of two Lya clouds in the vicinity of the Virgo cluster. We detect
C II, Si II, and Si III absorption lines in the Lya absorber at z = 0.00530.
Previous observations with FUSE have revealed Ly beta - Ly theta lines at this
redshift, thereby accurately constraining N(H I). We model the ionization of
the gas and derive [C/H] = -1.2^{+0.3}_{-0.2}, [Si/C] = 0.2+/-0.1, and log
n_{H} = -2.8+/-0.3. The model implies a small absorber thickness, ~70 pc, and
thermal pressure p/k ~ 40 cm^{-3} K. It is most likely that the absorber is
pressure confined by an external medium because gravitational confinement would
require a very high ratio of dark matter to baryonic matter. Based on Milky Way
sight lines in which carbon and silicon abundances have been reliably measured
in the same interstellar cloud (including new measurements presented herein),
we argue that the overabundance of Si relative to C is not due to dust
depletion. Instead, this probably indicates that the gas has been predominately
enriched by Type II supernovae. Such enrichment is most plausibly provided by
an unbound galactic wind, given the absence of galaxies within a projected
distance of 100 kpc and the presence of galaxies capable of driving a wind at
larger distances. We also constrain the metallicity and physical conditions of
the Virgo absorber at z = 0.00337 based on detections of O VI and H I and an
upper limit on C IV. If this absorber is collisionally ionized, the O VI/C IV
limit requires T > 10^{5.3} K. For either collisional ionization or
photoionization, we find that [O/H] > -2.0 at z = 0.00337.Comment: Final Ap.J. versio
- …