32 research outputs found

    Introduction

    No full text

    Introduction

    No full text

    MOLECULAR SYSTEMATICS OF \u3ci\u3eMESOCESTOIDES\u3c/i\u3e SPP. (CESTODA: MESOCESTOIDIDAE) FROM DOMESTIC DOGS (\u3ci\u3eCANIS FAMILIARIS\u3c/i\u3e) AND COYOTES (\u3ci\u3eCANIS LATRANS\u3c/i\u3e)

    Get PDF
    The genus Mesocestoides Vaillant, 1863 includes tapeworms of uncertain phylogenetic affinities and with poorly defined life histories. We previously documented 11 cases of peritoneal cestodiasis in dogs (Canis familiaris L.) in western North America caused by metacestodes of Mesocestoides spp. In the current study, DNA sequences were obtained from metacestodes collected from these dogs (n = 10), as well as proglottids from dogs (n = 3) and coyotes (Canis latrans Say, 1823 [n = 2]), and tetrathyridia representing laboratory isolates of M. corti (n = 3), and these data were analyzed phylogenetically. Two nuclear genetic markers, 18S ribosomal DNA and the second internal-transcribed spacer (ITS 2), were sequenced. Phylogenetic analysis of the 18S rDNA data recovered a monophyletic group composed of all samples of Mesocestoides spp., distinct from closely related outgroup taxa (Amurotaenia Akhmerov, 1941 and Tetrabothrius Rudolphi, 1819). Initial analysis of the ITS 2 data resolved 3 clades within Mesocestoides. Two proglottids from dogs formed a basal clade, a second clade was represented by tetrathyridial isolates, and a third clade included all other samples. Interpretation of these data from an apomorphy-based perspective identified 6 evolutionary lineages. We also assessed whether metacestodes from dogs (n = 4) are capable of asexual proliferation in laboratory mice. One tetrathyridial and 2 acephalic isolates from dogs proliferated asexually. Further investigation is warranted to determine which of the lineages represent distinct species and to determine the life history strategies of Mesocestoides spp

    Hypomethylating agents synergize with irinotecan to improve response to chemotherapy in colorectal cancer cells

    No full text
    <div><p>Colorectal cancer (CRC) is the second leading cause of cancer death in the United States. In the metastatic setting, the majority of patients respond to initial therapies but eventually develop resistance and progress. In this study, we test the hypothesis that priming with epigenetic therapy sensitizes CRC cell lines, which were previously resistant to subsequent chemotherapeutic agents. When multiple CRC cell lines are first exposed to 500 nM of the DNA demethylating agent, 5-aza-cytidine (AZA) <i>in-vitro</i>, and the cells then established as <i>in-vivo</i> xenografts in untreated NOD-SCID mice; there is an enhanced response to cytotoxic chemotherapy with agents commonly used in CRC treatment. For irinotecan (IRI), growth diminished by 16–62 fold as assessed, by both proliferation (IC50) and anchorage independent cell growth soft agar assays. Treatment of resistant HCT116 cell line along with <i>in-vivo</i>, for CRC line xenografts, AZA plus IRI again exhibits this synergistic response with significant improvement in survival and tumor regression in the mice. Genome-wide expression correlates changes in pathways for cell adhesion and DNA repair with the above responses. A Phase 1/2 clinical trial testing this concept is already underway testing the clinical efficacy of this concept in IRI resistant, metastatic CRC (NCT01896856).</p></div
    corecore