208 research outputs found

    Are chest compressions safe for the patient reconstructed with sternal plates? Evaluating the safety of cardiopulmonary resuscitation using a human cadaveric model

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Plate and screw fixation is a recent addition to the sternal wound treatment armamentarium. Patients undergoing cardiac and major vascular surgery have a higher risk of postoperative arrest than other elective patients. Those who undergo sternotomy for either cardiac or major vascular procedures are at a higher risk of postoperative arrest. Sternal plate design allows quick access to the mediastinum facilitating open cardiac massage, but chest compressions are the mainstay of re-establishing cardiac output in the event of arrest. The response of sternal plates and the chest wall to compressions when plated has not been studied. The safety of performing this maneuver is unknown. This study intends to demonstrate compressions are safe after sternal plating.</p> <p>Methods</p> <p>We investigated the effect of chest compressions on the plated sternum using a human cadaveric model. Cadavers were plated, an arrest was simulated, and an experienced physician performed a simulated resuscitation. Intrathoracic pressure was monitored throughout to ensure the plates encountered an appropriate degree of force. The hardware and viscera were evaluated for failure and trauma respectively.</p> <p>Results</p> <p>No hardware failure or obvious visceral trauma was observed. Rib fractures beyond the boundaries of the plates were noted but the incidence was comparable to control and to the fracture incidence after resuscitation previously cited in the literature.</p> <p>Conclusions</p> <p>From this work we believe chest compressions are safe for the patient with sternal plates when proper plating technique is used. We advocate the use of this life-saving maneuver as part of an ACLS resuscitation in the event of an arrest for rapidly re-establishing circulation.</p

    A counterbalanced cross-over study of the effects of visual, auditory and no feedback on performance measures in a simulated cardiopulmonary resuscitation

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Previous research has demonstrated that trained rescuers have difficulties achieving and maintaining the correct depth and rate of chest compressions during both in and out of hospital cardiopulmonary resuscitation (CPR). Feedback on rate and depth mitigate decline in performance quality but not completely with the residual performance decline attributed to rescuer fatigue. The purpose of this study was to examine the effects of feedback (none, auditory only and visual only) on the quality of CPR and rescuer fatigue.</p> <p>Methods</p> <p>Fifteen female volunteers performed 10 minutes of 30:2 CPR in each of three feedback conditions: none, auditory only, and visual only. Visual feedback was displayed continuously in graphic form. Auditory feedback was error correcting and provided by a voice assisted CPR manikin. CPR quality measures were collected using SkillReporter<sup>® </sup>software. Blood lactate (mmol/dl) and perceived exertion served as indices of fatigue. One-way and two way repeated measures analyses of variance were used with alpha set <it>a priori </it>at 0.05.</p> <p>Results</p> <p>Visual feedback yielded a greater percentage of correct compressions (78.1 ± 8.2%) than did auditory (65.4 ± 7.6%) or no feedback (44.5 ± 8.1%). Compression rate with auditory feedback (87.9 ± 0.5 compressions per minute) was less than it was with both visual and no feedback (p < 0.05). CPR performed with no feedback (39.2 ± 0.5 mm) yielded a shallower average depth of compression and a lower percentage (55 ± 8.9%) of compressions within the accepted 38-50 mm range than did auditory or visual feedback (p < 0.05). The duty cycle for auditory feedback (39.4 ± 1.6%) was less than it was with no feedback (p < 0.05). Auditory feedback produced lower lactate concentrations than did visual feedback (p < 0.05) but there were no differences in perceived exertion.</p> <p>Conclusions</p> <p>In this study feedback mitigated the negative effects of fatigue on CPR performance and visual feedback yielded better CPR performance than did no feedback or auditory feedback. The perfect confounding of sensory modality and periodicity of feedback (visual feedback provided continuously and auditory feedback provided to correct error) leaves unanswered the question of optimal form and timing of feedback.</p

    Evaluation of coronary blood flow velocity during cardiac arrest with circulation maintained through mechanical chest compressions in a porcine model

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Mechanical chest compressions (CCs) have been shown capable of maintaining circulation in humans suffering cardiac arrest for extensive periods of time. Reports have documented a visually normalized coronary blood flow during angiography in such cases (TIMI III flow), but it has never been actually measured. Only indirect measurements of the coronary circulation during cardiac arrest with on-going mechanical CCs have been performed previously through measurement of the coronary perfusion pressure (CPP). In this study our aim was to correlate average peak coronary flow velocity (APV) to CPP during mechanical CCs.</p> <p>Methods</p> <p>In a closed chest porcine model, cardiac arrest was established through electrically induced ventricular fibrillation (VF) in eleven pigs. After one minute, mechanical chest compressions were initiated and then maintained for 10 minutes upon which the pigs were defibrillated. Measurements of coronary blood flow in the left anterior descending artery were made at baseline and during VF with a catheter based Doppler flow fire measuring APV. Furthermore measurements of central (thoracic) venous and arterial pressures were also made in order to calculate the theoretical CPP.</p> <p>Results</p> <p>Average peak coronary flow velocity was significantly higher compared to baseline during mechanical chests compressions and this was observed during the entire period of mechanical chest compressions (12 - 39% above baseline). The APV slowly declined during the 10 min period of mechanical chest compressions, but was still higher than baseline at the end of mechanical chest compressions. CPP was simultaneously maintained at > 20 mmHg during the 10 minute episode of cardiac arrest.</p> <p>Conclusion</p> <p>Our study showed good correlation between CPP and APV which was highly significant, during cardiac arrest with on-going mechanical CCs in a closed chest porcine model. In addition APV was even higher during mechanical CCs compared to baseline. Mechanical CCs can, at minimum, re-establish coronary blood flow in non-diseased coronary arteries during cardiac arrest.</p

    Effects of Neonatal Neural Progenitor Cell Implantation on Adult Neuroanatomy and Cognition in the Ts65Dn Model of Down Syndrome

    Get PDF
    As much of the aberrant neural development in Down syndrome (DS) occurs postnatally, an early opportunity exists to intervene and influence life-long cognitive development. Recent success using neural progenitor cells (NPC) in models of adult neurodegeneration indicate such therapy may be a viable option in diseases such as DS. Murine NPC (mNPC, C17.2 cell line) or saline were implanted bilaterally into the dorsal hippocampus of postnatal day 2 (PND 2) Ts65Dn pups to explore the feasibility of early postnatal treatment in this mouse model of DS. Disomic littermates provided karyotype controls for trisomic pups. Pups were monitored for developmental milestone achievement, and then underwent adult behavior testing at 14 weeks of age. We found that implanted mNPC survived into adulthood and migrated beyond the implant site in both karyotypes. The implantation of mNPC resulted in a significant increase in the density of dentate granule cells. However, mNPC implantation did not elicit cognitive changes in trisomic mice either neonatally or in adulthood. To the best of our knowledge, these results constitute the first assessment of mNPC as an early intervention on cognitive ability in a DS model

    Hands-on time during cardiopulmonary resuscitation is affected by the process of teambuilding: a prospective randomised simulator-based trial

    Get PDF
    BACKGROUND: Cardiac arrests are handled by teams rather than by individual health-care workers. Recent investigations demonstrate that adherence to CPR guidelines can be less than optimal, that deviations from treatment algorithms are associated with lower survival rates, and that deficits in performance are associated with shortcomings in the process of team-building. The aim of this study was to explore and quantify the effects of ad-hoc team-building on the adherence to the algorithms of CPR among two types of physicians that play an important role as first responders during CPR: general practitioners and hospital physicians. METHODS: To unmask team-building this prospective randomised study compared the performance of preformed teams, i.e. teams that had undergone their process of team-building prior to the onset of a cardiac arrest, with that of teams that had to form ad-hoc during the cardiac arrest. 50 teams consisting of three general practitioners each and 50 teams consisting of three hospital physicians each, were randomised to two different versions of a simulated witnessed cardiac arrest: the arrest occurred either in the presence of only one physician while the remaining two physicians were summoned to help ("ad-hoc"), or it occurred in the presence of all three physicians ("preformed"). All scenarios were videotaped and performance was analysed post-hoc by two independent observers. RESULTS: Compared to preformed teams, ad-hoc forming teams had less hands-on time during the first 180 seconds of the arrest (93 +/- 37 vs. 124 +/- 33 sec, P > 0.0001), delayed their first defibrillation (67 +/- 42 vs. 107 +/- 46 sec, P > 0.0001), and made less leadership statements (15 +/- 5 vs. 21 +/- 6, P > 0.0001). CONCLUSION: Hands-on time and time to defibrillation, two performance markers of CPR with a proven relevance for medical outcome, are negatively affected by shortcomings in the process of ad-hoc team-building and particularly deficits in leadership. Team-building has thus to be regarded as an additional task imposed on teams forming ad-hoc during CPR. All physicians should be aware that early structuring of the own team is a prerequisite for timely and effective execution of CPR

    Enhanced microbial bile acid deconjugation and impaired ileal uptake in pregnancy repress intestinal regulation of bile acid synthesis

    Get PDF
    Pregnancy is associated with progressive hypercholanemia, hypercholesterolemia, and hypertriglyceridemia, which can result in metabolic disease in susceptible women. Gut signals modify hepatic homeostatic pathways, linking intestinal content to metabolic activity. We sought to identify whether enteric endocrine signals contribute to raised serum bile acids observed in human and murine pregnancies, by measuring fibroblast growth factor (FGF) 19/15 protein and mRNA levels, and 7α-hydroxy-4-cholesten-3-one. Terminal ileal farnesoid X receptor (FXR)-mediated gene expression and apical sodium bile acid transporter (ASBT) protein concentration were measured by qPCR and western blotting. Shotgun whole-genome sequencing and ultra-performance liquid chromatography tandem mass spectrometry were used to determine the cecal microbiome and metabonome. Targeted and untargeted pathway analyses were performed to predict the systemic effects of the altered metagenome and metabolite profiles. Dietary CA supplementation was used to determine whether the observed alterations could be overcome by intestinal bile acids functioning as FXR agonists. Human and murine pregnancy were associated with reduced intestinal FXR signaling, with lower FGF19/15 and resultant increased hepatic bile acid synthesis. Terminal ileal ASBT protein was reduced in murine pregnancy. Cecal bile acid conjugation was reduced in pregnancy because of elevated bile salt hydrolase-producing Bacteroidetes. CA supplementation induced intestinal FXR signaling, which was not abrogated by pregnancy, with strikingly similar changes to the microbiota and metabonome as identified in pregnancy. Conclusion: The altered intestinal microbiota of pregnancy enhance bile acid deconjugation, reducing ileal bile acid uptake and lowering FXR induction in enterocytes. This exacerbates the effects mediated by reduced bile acid uptake transporters in pregnancy. Thus, in pregnant women and mice, there is reduced FGF19/15-mediated hepatic repression of hepatic bile acid synthesis, resulting in hypercholanemia
    corecore