463 research outputs found

    Multiangle static and dynamic light scattering in the intermediate scattering angle range

    Full text link
    We describe a light scattering apparatus based on a novel optical scheme covering the scattering angle range 0.5\dg \le \theta \le 25\dg, an intermediate regime at the frontier between wide angle and small angle setups that is difficult to access by existing instruments. Our apparatus uses standard, readily available optomechanical components. Thanks to the use of a charge-coupled device detector, both static and dynamic light scattering can be performed simultaneously at several scattering angles. We demonstrate the capabilities of our apparatus by measuring the scattering profile of a variety of samples and the Brownian dynamics of a dilute colloidal suspension

    Forces on Dust Grains Exposed to Anisotropic Interstellar Radiation Fields

    Get PDF
    Grains exposed to anisotropic radiation fields are subjected to forces due to the asymmetric photon-stimulated ejection of particles. These forces act in addition to the ``radiation pressure'' due to absorption and scattering. Here we model the forces due to photoelectron emission and the photodesorption of adatoms. The ``photoelectric'' force depends on the ambient conditions relevant to grain charging. We find that it is comparable to the radiation pressure when the grain potential is relatively low and the radiation spectrum is relatively hard. The calculation of the ``photodesorption'' force is highly uncertain, since the surface physics and chemsitry of grain materials are poorly understood at present. For our simple yet plausible model, the photodesorption force dominates the radiation pressure for grains with size >~0.1 micron exposed to starlight from OB stars. We find that the anisotropy of the interstellar radiation field is ~10% in the visible and ultraviolet. We estimate size-dependent drift speeds for grains in the cold and warm neutral media and find that micron-sized grains could potentially be moved across a diffuse cloud during its lifetime.Comment: LaTeX(41 pages, 19 figures), submitted to Ap

    Notes on Conformal Invisibility Devices

    Get PDF
    As a consequence of the wave nature of light, invisibility devices based on isotropic media cannot be perfect. The principal distortions of invisibility are due to reflections and time delays. Reflections can be made exponentially small for devices that are large in comparison with the wavelength of light. Time delays are unavoidable and will result in wave-front dislocations. This paper considers invisibility devices based on optical conformal mapping. The paper shows that the time delays do not depend on the directions and impact parameters of incident light rays, although the refractive-index profile of any conformal invisibility device is necessarily asymmetric. The distortions of images are thus uniform, which reduces the risk of detection. The paper also shows how the ideas of invisibility devices are connected to the transmutation of force, the stereographic projection and Escheresque tilings of the plane

    Accurate structure factors from pseudopotential methods

    Full text link
    Highly accurate experimental structure factors of silicon are available in the literature, and these provide the ideal test for any \emph{ab initio} method for the construction of the all-electron charge density. In a recent paper [J. R. Trail and D. M. Bird, Phys. Rev. B {\bf 60}, 7863 (1999)] a method has been developed for obtaining an accurate all-electron charge density from a first principles pseudopotential calculation by reconstructing the core region of an atom of choice. Here this method is applied to bulk silicon, and structure factors are derived and compared with experimental and Full-potential Linear Augmented Plane Wave results (FLAPW). We also compare with the result of assuming the core region is spherically symmetric, and with the result of constructing a charge density from the pseudo-valence density + frozen core electrons. Neither of these approximations provide accurate charge densities. The aspherical reconstruction is found to be as accurate as FLAPW results, and reproduces the residual error between the FLAPW and experimental results.Comment: 6 Pages, 3 figure

    Experimental Observation of Resonance Effects in Intensely Irradiated Atomic Clusters

    Full text link
    We have resolved the expansion of intensely irradiated atomic clusters on a femtosecond time scale. These data show evidence for resonant heating, similar to resonance absorption, in spherical cluster plasmas

    Efficient total energy calculations from self-energy models

    Get PDF
    We propose a new method for calculating total energies of systems of interacting electrons, which requires little more computational resources than standard density-functional theories. The total energy is calculated within the framework of many-body perturbation theory by using an efficient model of the self-energy, that nevertheless retains the main features of the exact operator. The method shows promising performance when tested against quantum Monte Carlo results for the linear response of the homogeneous electron gas and structural properties of bulk silicon

    Partial Transmutation of Singularities in Optical Instruments

    Full text link
    Some interesting optical instruments such as the Eaton lens and the Invisible Sphere require singularities of the refractive index for their implementation. We show how to transmute those singularities into harmless topological defects in anisotropic media without the need for anomalous material properties

    Characterization of doping levels in heteronuclear, gas-phase, van der Waals clusters and their energy absorption from an intense optical field

    Get PDF
    A simple mass spectrometric method has been developed to quantify dopant levels in heteronuclear clusters in the gas phase. The method is demonstrated with reference to quantification of the water content in supersonic beams of water-doped argon clusters. Such doped clusters have assumed much importance in the context of recently-reported doping-induced enhancement in the emission of energetic charged particles and photons upon their interaction with intense laser pulses. We have also measured the energy that a doped cluster absorbs from the optical field; we find that energy absorption increases with increasing level of doping. The oft-used linear model of energy absorption is found to be quantitatively inadequate.Comment: To appear in Chemical Physics Letter

    Quantum Monte Carlo calculations of the one-body density matrix and excitation energies of silicon

    Full text link
    Quantum Monte Carlo (QMC) techniques are used to calculate the one-body density matrix and excitation energies for the valence electrons of bulk silicon. The one-body density matrix and energies are obtained from a Slater-Jastrow wave function with a determinant of local density approximation (LDA) orbitals. The QMC density matrix evaluated in a basis of LDA orbitals is strongly diagonally dominant. The natural orbitals obtained by diagonalizing the QMC density matrix resemble the LDA orbitals very closely. Replacing the determinant of LDA orbitals in the wave function by a determinant of natural orbitals makes no significant difference to the quality of the wave function's nodal surface, leaving the diffusion Monte Carlo energy unchanged. The Extended Koopmans' Theorem for correlated wave functions is used to calculate excitation energies for silicon, which are in reasonable agreement with the available experimental data. A diagonal approximation to the theorem, evaluated in the basis of LDA orbitals, works quite well for both the quasihole and quasielectron states. We have found that this approximation has an advantageous scaling with system size, allowing more efficient studies of larger systems.Comment: 13 pages, 4 figures. To appear in Phys. Rev.

    Core reconstruction in pseudopotential calculations

    Full text link
    A new method is presented for obtaining all-electron results from a pseudopotential calculation. This is achieved by carrying out a localised calculation in the region of an atomic nucleus using the embedding potential method of Inglesfield [J.Phys. C {\bf 14}, 3795 (1981)]. In this method the core region is \emph{reconstructed}, and none of the simplifying approximations (such as spherical symmetry of the charge density/potential or frozen core electrons) that previous solutions to this problem have required are made. The embedding method requires an accurate real space Green function, and an analysis of the errors introduced in constructing this from a set of numerical eigenstates is given. Results are presented for an all-electron reconstruction of bulk aluminium, for both the charge density and the density of states.Comment: 14 pages, 5 figure
    • …
    corecore