31 research outputs found

    Characterization of a New Mouse Model for Peripheral T Cell Lymphoma in Humans

    Get PDF
    Peripheral T cell lymphomas (PTCLs) are associated with a poor prognosis due to often advanced disease at the time of diagnosis and due to a lack of efficient therapeutic options. Therefore, appropriate animal models of PTCL are vital to improve clinical management of this disease. Here, we describe a monoclonal CD8+ CD4− αβ T cell receptor Vβ2+ CD28+ T cell lymphoma line, termed T8-28. T8-28 cells were isolated from an un-manipulated adult BALB/c mouse housed under standard pathogen-free conditions. T8-28 cells induced terminal malignancy upon adoptive transfer into syngeneic BALB/c mice. Despite intracellular expression of the cytotoxic T cell differentiation marker granzyme B, T8-28 cells appeared to be defective with respect to cytotoxic activity as read-out in vitro. Among the protocols tested, only addition of interleukin 2 in vitro could partially compensate for the in vivo micro-milieu in promoting growth of the T8-28 lymphoma cells

    HIV's evasion of the cellular immune response

    Get PDF
    Despite a strong cytotoxic T-lymphocyte (CTL) response directed against viral antigens, untreated individuals infected with the human immunodeficiency virus (HIV-1) develop AIDS, We have found that primary T cells infected with HIV-1 downregulate surface MHC class I antigens and are resistant to lysis by HLA-A2-restricted CTL clones. In contrast, cells infected with an HIV-1 in which the nef gene is disrupted are sensitive to CTLs in an MHC and peptide-specific manner. In primary T cells HLA-A2 antigens are downmodulated more dramatically than total MHC class I antigens, suggesting that nef selectively downmodulates certain MHC class I antigens. In support of this, studies on ceils expressing individual MHC class I alietes have revealed that nef does not downmodulate HLA-C and HLA-E antigens, This selective downmodulation allows Infected cells to maintain resistance to certain natural killer cells that lyse infected cells expressing low levels of MHC class I antigens. Downmodulation of MHC class I HLA-A2 antigens occurs not only in primary T cells, but also in B and astrocytoma cell lines. No effect of other HIV-1 accessory proteins such as vpu and vpr was observed. Thus Nef is a protein that may promote escape of HIV-1 from immune surveillance.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/75570/1/j.1600-065X.1999.tb01283.x.pd

    Protective versus pathogenic anti-CD4 immunity: insights from the study of natural resistance to HIV infection

    Get PDF
    HIV-1 exposure causes several dramatic unbalances in the immune system homeostasis. Here, we will focus on the paradox whereby CD4 specific autoimmune responses, which are expected to contribute to the catastrophic loss of most part of the T helper lymphocyte subset in infected patients, may display the characteristics of an unconventional protective immunity in individuals naturally resistant to HIV-1 infection. Reference to differences in fine epitope mapping of these two oppositely polarized outcomes will be presented, with particular reference to partially or totally CD4-gp120 complex-specific antibodies. The fine tuning of the anti-self immune response to the HIV-1 receptor may determine whether viral exposure will result in infection or, alternatively, protective immunity

    Mechanism of MHC class I downregulation in HIV infected cells

    Get PDF
    HIV infection of CD4+ peripheral blood lymphocytes leads to a loss of MHC dass I molecules on the surface of the infected cells as detectable by monodonal antibody staining and flow cytometry. Incubation of the infected cells at 26 oe or treatment at 37 oe with peptides leads to upregulation of MHC dass I to levels equal to those found on uninfected cells cultured und er the same conditions. The data suggest that, after HIV infection, the mechanisms responsible for peptide generation, peptide transport and thus stable association between peptides and MHC dass I molecules are severely affected

    Superagonistic anti-CD28 antibodies: potent activators of regulatory T cells for the therapy of autoimmune diseases

    No full text
    This paper reviews the existing evidence regarding the use of superagonistic anti-CD28 antibodies (CD28 superagonists) for therapeutic manipulation of regulatory T cells (T(reg) cells). The molecular properties of superagonistic anti-CD28 antibodies allow the generation of a strong activating signal in mature T cells, including T(reg) cells, without additional stimulation of the T cell receptor complex. CD28 superagonist administration in vivo leads to the preferential expansion and strong activation of naturally occurring CD4+CD25+CTLA-4+FoxP3+ T(reg) cells over conventional T cells. In animal models, both prophylactic and therapeutic administration of a CD28 superagonist prevented or at least greatly mitigated clinical symptoms and induced remission. Adoptive transfer experiments have further shown that CD28 superagonists mediate protection by expansion and activation of CD4+CD25+ T(reg) cells. Therefore, superagonistic anti-CD28 antibodies offer a promising novel treatment option for human autoimmune diseases and the first clinical trials are eagerly awaited

    CD28 co-stimulation in T-cell homeostasis: a recent perspective

    No full text
    Niklas Beyersdorf, Thomas Kerkau, Thomas Hünig Institute for Virology and Immunobiology, University of Würzburg, Würzburg, Germany Abstract: T-cells play a key role within the adaptive immune system mediating cellular immunity and orchestrating the immune response as a whole. Their activation requires not only recognition of antigen/major histocompatibility complexes by the T-cell receptor but in addition co-stimulation via the CD28 molecule through binding to CD80, CD86, or as recently discovered, inducible co-stimulator ligand expressed by antigen-presenting cells. Apart from tight control of the co-stimulatory signal by the T-cell receptor complex, expression of the inhibitory receptor cytotoxic T-lymphocyte antigen-4 (CTLA-4) sharing its ligands with CD28 is required to avoid inappropriate or prolonged T-cell activation. CD4+ Foxp3+ regulatory T (Treg) cells, which are crucial inhibitors of autoimmunity, add another level of complexity in that they differ from conventional non-regulatory CD4+ T-cells by strongly depending on CD28 signaling for their generation and homeostasis. Moreover, CTLA-4 is constitutively expressed by Treg cells where it serves as a key mediator of suppression, while conventional CD4+ T-cells express CTLA-4 only after activation. Here, we discuss recent insights into the molecular events underlying CD28-mediated co-stimulation, its impact on gene regulation, and the differential role of CD28 expression on Treg cells versus conventional CD4+ and CD8+ T-cells. Moreover, we summarize the exciting therapeutic options which have arisen from our current understanding of T-cell co-stimulation. Some of these have already been translated into the clinic, while others are expected to follow soon due to promising preclinical results. In particular, we discuss the failed 2006 trial of the CD28 superagonist TGN1412, and the return of this potent T-cell activator to clinical development. Keywords: CTLA-4, mAbs, rheumatoid arthritis, Treg cells, CD28 superagonist, TGN141
    corecore