79 research outputs found

    Cosmic ray feedback in the FIRE simulations: constraining cosmic ray propagation with GeV gamma ray emission

    Get PDF
    We present the implementation and the first results of cosmic ray (CR) feedback in the Feedback In Realistic Environments (FIRE) simulations. We investigate CR feedback in non-cosmological simulations of dwarf, sub-L⋆L\star starburst, and L⋆L\star galaxies with different propagation models, including advection, isotropic and anisotropic diffusion, and streaming along field lines with different transport coefficients. We simulate CR diffusion and streaming simultaneously in galaxies with high resolution, using a two moment method. We forward-model and compare to observations of γ\gamma-ray emission from nearby and starburst galaxies. We reproduce the γ\gamma-ray observations of dwarf and L⋆L\star galaxies with constant isotropic diffusion coefficient κ∼3×1029 cm2 s−1\kappa \sim 3\times 10^{29}\,{\rm cm^{2}\,s^{-1}}. Advection-only and streaming-only models produce order-of-magnitude too large γ\gamma-ray luminosities in dwarf and L⋆L\star galaxies. We show that in models that match the γ\gamma-ray observations, most CRs escape low-gas-density galaxies (e.g.\ dwarfs) before significant collisional losses, while starburst galaxies are CR proton calorimeters. While adiabatic losses can be significant, they occur only after CRs escape galaxies, so they are only of secondary importance for γ\gamma-ray emissivities. Models where CRs are ``trapped'' in the star-forming disk have lower star formation efficiency, but these models are ruled out by γ\gamma-ray observations. For models with constant κ\kappa that match the γ\gamma-ray observations, CRs form extended halos with scale heights of several kpc to several tens of kpc.Comment: 31 pages, 26 figures, accepted for publication in MNRA

    Sweating the small stuff: simulating dwarf galaxies, ultra-faint dwarf galaxies, and their own tiny satellites

    Get PDF
    We present FIRE/Gizmo hydrodynamic zoom-in simulations of isolated dark matter halos, two each at the mass of classical dwarf galaxies (Mvir≃1010M⊙M_{\rm vir} \simeq 10^{10} M_{\odot}) and ultra-faint galaxies (Mvir≃109M⊙M_{\rm vir} \simeq 10^9 M_{\odot}), and with two feedback implementations. The resultant central galaxies lie on an extrapolated abundance matching relation from M⋆≃106M_{\star} \simeq 10^6 to 104M⊙10^4 M_{\odot} without a break. Every host is filled with subhalos, many of which form stars. Our dwarfs with M⋆≃106M⊙M_{\star} \simeq 10^6 M_{\odot} each have 1-2 well-resolved satellites with M⋆=3−200×103M⊙M_{\star} = 3-200 \times 10^3 M_{\odot}. Even our isolated ultra-faint galaxies have star-forming subhalos. If this is representative, dwarf galaxies throughout the universe should commonly host tiny satellite galaxies of their own. We combine our results with the ELVIS simulations to show that targeting ∼50 kpc\sim 50~ \rm kpc regions around nearby isolated dwarfs could increase the chances of discovering ultra-faint galaxies by ∼35%\sim 35\% compared to random halo pointings, and specifically identify the region around the Phoenix dwarf galaxy as a good potential target. The well-resolved ultra-faint galaxies in our simulations (M⋆≃3−30×103M⊙M_{\star} \simeq 3 - 30 \times 10^3 M_{\odot}) form within Mpeak≃0.5−3×109M⊙M_{\rm peak} \simeq 0.5 - 3 \times 10^9 M_{\odot} halos. Each has a uniformly ancient stellar population (>10 Gyr > 10~ \rm Gyr) owing to reionization-related quenching. More massive systems, in contrast, all have late-time star formation. Our results suggest that Mhalo≃5×109M⊙M_{\rm halo} \simeq 5 \times 10^9 M_{\odot} is a probable dividing line between halos hosting reionization "fossils" and those hosting dwarfs that can continue to form stars in isolation after reionization.Comment: 12 pages, 6 figures, 1 table, submitted to MNRA

    The Simulated HI Sky at low redshift

    Get PDF
    Observations of intergalactic neutral hydrogen can provide a wealth of information about structure and galaxy formation, potentially tracing accretion and feedback processes on Mpc scales. Below a column density of NHI ~ 10^19 cm-2, the "edge" or typical observational limit for HI emission from galaxies, simulations predict a cosmic web of extended emission and filamentary structures. We study the distribution of neutral hydrogen and its 21cm emission properties in a cosmological hydrodynamic simulation, to gain more insights into the distribution of HI below NHI ~ 10^19 cm-2. Such Lyman Limit systems are expected to trace out the cosmic web, and are relatively unexplored. Beginning with a 32 h^-1 Mpc simulation, we extract the neutral hydrogen component by determining the neutral fraction, including a post-processed correction for self-shielding based on the thermal pressure. We take into account molecular hydrogen, assuming an average density ratio Omega_H2 / Omega_HI = 0.3 at z = 0. The statistical properties of the HI emission are compared with observations, to assess the reliability of the simulation. The simulated HI distribution robustly describes the full column density range between NHI ~ 10^14 and NHI ~ 10^21 cm-2 and agrees very well with available measurements from observations. Furthermore there is good correspondence in the statistics when looking at the two-point correlation function and the HI mass function. The reconstructed maps are used to simulate observations of existing and future telescopes by adding noise and taking account of the sensitivity of the telescopes. The general agreement in statistical properties of HI suggests that neutral hydrogen as modeled in this hydrodynamic simulation is a fair representation of that in the Universe. (abridged)Comment: 20 pages, 17 figures, Accepted for publication in A&A, figures compressed to low resolution; high-resolution version available at: http://www.astro.rug.nl/~popping/simulated_HI_sky.pd

    Strongly Time-Variable Ultra-Violet Metal Line Emission from the Circum-Galactic Medium of High-Redshift Galaxies

    Get PDF
    We use cosmological simulations from the Feedback In Realistic Environments (FIRE) project, which implement a comprehensive set of stellar feedback processes, to study ultra-violet (UV) metal line emission from the circum-galactic medium of high-redshift (z=2-4) galaxies. Our simulations cover the halo mass range Mh ~ 2x10^11 - 8.5x10^12 Msun at z=2, representative of Lyman break galaxies. Of the transitions we analyze, the low-ionization C III (977 A) and Si III (1207 A) emission lines are the most luminous, with C IV (1548 A) and Si IV (1394 A) also showing interesting spatially-extended structures. The more massive halos are on average more UV-luminous. The UV metal line emission from galactic halos in our simulations arises primarily from collisionally ionized gas and is strongly time variable, with peak-to-trough variations of up to ~2 dex. The peaks of UV metal line luminosity correspond closely to massive and energetic mass outflow events, which follow bursts of star formation and inject sufficient energy into galactic halos to power the metal line emission. The strong time variability implies that even some relatively low-mass halos may be detectable. Conversely, flux-limited samples will be biased toward halos whose central galaxy has recently experienced a strong burst of star formation. Spatially-extended UV metal line emission around high-redshift galaxies should be detectable by current and upcoming integral field spectrographs such as the Multi Unit Spectroscopic Explorer (MUSE) on the Very Large Telescope and Keck Cosmic Web Imager (KCWI).Comment: 16 pages, 8 figures, accepted for publication in MNRA

    The nature of submillimetre galaxies in cosmological hydrodynamic simulations

    Get PDF
    We study the nature of rapidly star-forming galaxies at z= 2 in cosmological hydrodynamic simulations, and compare their properties to observations of submillimetre galaxies (SMGs). We identify simulated SMGs as the most rapidly star-forming systems that match the observed number density of SMGs. In our models, SMGs are massive galaxies sitting at the centres of large potential wells, being fed by smooth infall and gas-rich satellites at rates comparable to their star formation rates (SFRs). They are not typically undergoing major mergers that significantly boost their quiescent SFR, but they still often show complex gas morphologies and kinematics. Our simulated SMGs have stellar masses of M*∼ 1011−11.7 M⊙, SFRs of ∼180–500 M⊙ yr−1, a clustering length of ∼10 h−1 Mpc and solar metallicities. The SFRs are lower than those inferred from far-infrared (far-IR) data by ∼×3, which we suggest may owe to one or more systematic effects in the SFR calibrations. SMGs at z= 2 live in ∼1013 M⊙ haloes, and by z= 0 they mostly end up as brightest group galaxies in ∼1014 M⊙ haloes. We predict that higher M* SMGs should have on average lower specific SFRs, less disturbed morphologies and higher clustering. We also predict that deeper far-IR surveys will smoothly join SMGs on to the massive end of the SFR–M* relationship defined by lower mass z∼ 2 galaxies. Overall, our simulated rapid star-formers provide as good a match to available SMG data as merger-based scenarios, offering an alternative scenario that emerges naturally from cosmological simulations
    • …
    corecore