45 research outputs found
Further constraints on electron acceleration in solar noise storms
We reexamine the energetics of nonthermal electron acceleration in solar
noise storms. A new result is obtained for the minimum nonthermal electron
number density required to produce a Langmuir wave population of sufficient
intensity to power the noise storm emission. We combine this constraint with
the stochastic electron acceleration formalism developed by Subramanian &
Becker (2005) to derive a rigorous estimate for the efficiency of the overall
noise storm emission process, beginning with nonthermal electron acceleration
and culminating in the observed radiation. We also calculate separate
efficiencies for the electron acceleration -- Langmuir wave generation stage
and the Langmuir wave -- noise storm production stage. In addition, we obtain a
new theoretical estimate for the energy density of the Langmuir waves in noise
storm continuum sources.Comment: Accepted for publication in Solar Physic
Do solar decimetric spikes originate in coronal X-ray sources?
In the standard solar flare scenario, a large number of particles are
accelerated in the corona. Nonthermal electrons emit both X-rays and radio
waves. Thus, correlated signatures of the acceleration process are predicted at
both wavelengths, coinciding either close to the footpoints of a magnetic loop
or near the coronal X-ray source. We attempt to study the spatial connection
between coronal X-ray emission and decimetric radio spikes to determine the
site and geometry of the acceleration process. The positions of radio-spike
sources and coronal X-ray sources are determined and analyzed in a
well-observed limb event. Radio spikes are identified in observations from the
Phoenix-2 spectrometer. Data from the Nan\c{c}ay radioheliograph are used to
determine the position of the radio spikes. RHESSI images in soft and hard
X-ray wavelengths are used to determine the X-ray flare geometry. Those
observations are complemented by images from GOES/SXI. We find that decimetric
spikes do not originate from coronal X-ray flare sources contrary to previous
expectations. However, the observations suggest a causal link between the
coronal X-ray source, related to the major energy release site, and
simultaneous activity in the higher corona.Comment: 4 pages, 3 figures, A&AL accepte
Comparison of 30 THz impulsive burst time development to microwaves, H-alpha, EUV, and GOES soft X-rays
The recent discovery of impulsive solar burst emission in the 30 THz band is
raising new interpretation challenges. One event associated with a GOES M2
class flare has been observed simultaneously in microwaves, H-alpha, EUV, and
soft X-ray bands. Although these new observations confirm some features found
in the two prior known events, they exhibit time profile structure
discrepancies between 30 THz, microwaves, and hard X-rays (as inferred from the
Neupert effect). These results suggest a more complex relationship between 30
THz emission and radiation produced at other wavelength ranges. The multiple
frequency emissions in the impulsive phase are likely to be produced at a
common flaring site lower in the chromosphere. The 30 THz burst emission may be
either part of a nonthermal radiation mechanism or due to the rapid thermal
response to a beam of high-energy particles bombarding the dense solar
atmosphere.Comment: accepted to Astronomy and Astrophysic
LOFAR tied-array imaging of Type III solar radio bursts
Context. The Sun is an active source of radio emission which is often associated with energetic phenomena such as solar flares and coronal mass ejections (CMEs). At low radio frequencies (< 100 MHz), the Sun has not been imaged extensively because of
Noise storm continua: power estimates for electron acceleration
We use a generic stochastic acceleration formalism to examine the power
() input to nonthermal electrons that cause
noise storm continuum emission. The analytical approach includes the derivation
of the Green's function for a general second-order Fermi process, and its
application to obtain the particular solution for the nonthermal electron
distribution resulting from the acceleration of a Maxwellian source in the
corona. We compare with the power observed in noise
storm radiation. Using typical values for the various parameters, we find that
, yielding an efficiency
estimate in the range 10^{-10} \lsim \eta
\lsim 10^{-6} for this nonthermal acceleration/radiation process. These
results reflect the efficiency of the overall process, starting from electron
acceleration and culminating in the observed noise storm emission.Comment: Accepted for publication in Solar Physic
The NWCSAF/GEO software package for the MSG/IODC satellite service
Póster presentado en: EUMETSAT Meteorological Satellite Conference celebrada del 2 al 6 de Octubre de 2017 en Roma
The nowcasting SAF products and services: recent improvements in the new SW packages PPS v2018 and GEO v2018 and future plans
Presentación realizada en la 3rd European Nowcasting Conference, celebrada en la sede central de AEMET en Madrid del 24 al 26 de abril de 2019