155 research outputs found

    Superconducting MgB(2) films via precursor post-processing approach

    Full text link
    Superconducting MgB(2) films with Tc = 38.6 K were prepared using a precursor-deposition, ex-situ post-processing approach. Precursor films of boron, ~0.5 micrometer thick, were deposited onto Al(2)O(3) (102) substrates by e-beam evaporation; a post-anneal at 890 deg C in the presence of bulk MgB(2) and Mg metal produced highly crystalline MgB(2) films. X-ray diffraction indicated that the films exhibit some degree of c-axis alignment, but are randomly oriented in-plane. Transport current measurements of the superconducting properties show high values of the critical current density and yield an irreversibility line that exceeds that determined by magnetic measurements on bulk polycrystalline materials.Comment: PDF file with 10 pages total, including 4 figure

    Triple sign reversal of Hall effect in HgBa_{2}CaCu_{2}O_{6} thin films after heavy-ion irradiations

    Full text link
    Triple sign reversal in the mixed-state Hall effect has been observed for the first time in ion-irradiated HgBa_{2}CaCu_{2}O_{6} thin films. The negative dip at the third sign reversal is more pronounced for higher fields, which is opposite to the case of the first sign reversal near T_c in most high-T_c superconductors. These observations can be explained by a recent prediction in which the third sign reversal is attributed to the energy derivative of the density of states and to a temperature-dependent function related to the superconducting energy gap. These contributions prominently appear in cases where the mean free path is significantly decreased, such as our case of ion-irradiated thin films.Comment: 4 pages, 3 eps figures, submitted Phys. Rev. Let

    Resistive state of superconducting structures with fractal clusters of a normal phase

    Full text link
    The effect of morphologic factors on magnetic flux dynamics and critical currents in percolative superconducting structures is considered. The superconductor contains the fractal clusters of a normal phase, which act as pinning centers. The properties of these clusters are analyzed in the general case of gamma-distribution of their areas. The statistical characteristics of the normal phase clusters are studied, the critical current distribution is derived, and the dependencies of the main statistical parameters on the fractal dimension are found. The effect of fractal clusters of a normal phase on the electric field induced by the motion of the magnetic flux after the vortices have been broken away from pinning centers is considered. The voltage-current characteristics of fractal superconducting structures in a resistive state for an arbitrary fractal dimension are obtained. It is found that the fractality of the boundaries of normal phase clusters intensifies magnetic flux trapping and thereby increases the current-carrying capability of the superconductor.Comment: 15 pages with 8 figures, revtex3, alternative e-mail of author is [email protected]

    Evaluation of dose-dependent treatment effects after mid-trial dose escalation in biomarker, clinical, and cognitive outcomes for gantenerumab or solanezumab in dominantly inherited Alzheimer's disease

    Get PDF
    Introduction: While the Dominantly Inherited Alzheimer Network Trials Unit (DIAN-TU) was ongoing, external data suggested higher doses were needed to achieve targeted effects; therefore, doses of gantenerumab were increased 5-fold, and solanezumab was increased 4-fold. We evaluated to what extent mid-trial dose increases produced a dose-dependent treatment effect. Methods: Using generalized linear mixed effects (LME) models, we estimated the annual low- and high-dose treatment effects in clinical, cognitive, and biomarker outcomes. Results: Both gantenerumab and solanezumab demonstrated dose-dependent treatment effects (significant for gantenerumab, non-significant for solanezumab) in their respective target amyloid biomarkers (Pittsburgh compound B positron emission tomography standardized uptake value ratio and cerebrospinal fluid amyloid beta 42), with gantenerumab demonstrating additional treatment effects in some downstream biomarkers. No dose-dependent treatment effects were observed in clinical or cognitive outcomes. Conclusions: Mid-trial dose escalation can be implemented as a remedy for an insufficient initial dose and can be more cost effective and less burdensome to participants than starting a new trial with higher doses, especially in rare diseases. Highlights: We evaluated the dose-dependent treatment effect of two different amyloid-specific immunotherapies. Dose-dependent treatment effects were observed in some biomarkers. No dose-dependent treatment effects were observed in clinical/cognitive outcomes, potentially due to the fact that the modified study may not have been powered to detect such treatment effects in symptomatic subjects at a mild stage of disease exposed to high (or maximal) doses of medication for prolonged durations

    Dynamics of the magnetic flux trapped in fractal clusters of normal phase in a superconductor

    Full text link
    The influence of geometry and morphology of superconducting structure on critical currents and magnetic flux trapping in percolative type-II superconductor is considered. The superconductor contains the clusters of a normal phase, which act as pinning centers. It is found that such clusters have significant fractal properties. The main features of these clusters are studied in detail: the cluster statistics is analyzed; the fractal dimension of their boundary is estimated; the distribution of critical currents is obtained, and its peculiarities are explored. It is examined thoroughly how the finite resolution capacity of the cluster geometrical size measurement affects the estimated value of fractal dimension. The effect of fractal properties of the normal phase clusters on the electric field arising from magnetic flux motion is investigated in the case of an exponential distribution of cluster areas. The voltage-current characteristics of superconductors in the resistive state for an arbitrary fractal dimension are obtained. It is revealed that the fractality of the boundaries of the normal phase clusters intensifies the magnetic flux trapping and thereby raises the critical current of a superconductor.Comment: revtex, 16 pages with 1 table and 5 figures; text and figures are improved; more detailed version with geometric probability analisys of the distribution of entry points into weak links over the perimeter of a normal phase clusters and one additional figure is published in Phys.Rev.B; alternative e-mail of author is [email protected]

    AMPA Receptor Activation Causes Silencing of AMPA Receptor-Mediated Synaptic Transmission in the Developing Hippocampus

    Get PDF
    Agonist-induced internalization of transmembrane receptors is a widespread biological phenomenon that also may serve as a mechanism for synaptic plasticity. Here we show that the agonist AMPA causes a depression of AMPA receptor (AMPAR) signaling at glutamate synapses in the CA1 region of the hippocampus in slices from developing, but not from mature, rats. This developmentally restricted agonist-induced synaptic depression is expressed as a total loss of AMPAR signaling, without affecting NMDA receptor (NMDAR) signaling, in a large proportion of the developing synapses, thus creating AMPAR silent synapses. The AMPA-induced AMPAR silencing is induced independently of activation of mGluRs and NMDARs, and it mimics and occludes stimulus-induced depression, suggesting that this latter form of synaptic plasticity is expressed as agonist-induced removal of AMPARs. Induction of long-term potentiation (LTP) rendered the developing synapses resistant to the AMPA-induced depression, indicating that LTP contributes to the maturation-related increased stability of these synapses. Our study shows that agonist binding to AMPARs is a sufficient triggering stimulus for the creation of AMPAR silent synapses at developing glutamate synapses

    Early structural and functional defects in synapses and myelinated axons in stratum lacunosum moleculare in two preclinical models for tauopaty

    Get PDF
    The stratum lacunosum moleculare (SLM) is the connection hub between entorhinal cortex and hippocampus, two brain regions that are most vulnerable in Alzheimer’s disease. We recently identified a specific synaptic deficit of Nectin-3 in transgenic models for tauopathy. Here we defined cognitive impairment and electrophysiological problems in the SLM of Tau.P301L mice, which corroborated the structural defects in synapses and dendritic spines. Reduced diffusion of DiI from the ERC to the hippocampus indicated defective myelinated axonal pathways. Ultrastructurally, myelinated axons in the temporoammonic pathway (TA) that connects ERC to CA1 were damaged in Tau.P301L mice at young age. Unexpectedly, the myelin defects were even more severe in bigenic biGT mice that co-express GSK3β with Tau.P301L in neurons. Combined, our data demonstrate that neuronal expression of protein Tau profoundly affected the functional and structural organization of the entorhinal-hippocampal complex, in particular synapses and myelinated axons in the SLM. White matter pathology deserves further attention in patients suffering from tauopathy and Alzheimer’s disease

    Systematic review: conservative treatments for secondary lymphedema

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Several conservative (i.e., nonpharmacologic, nonsurgical) treatments exist for secondary lymphedema. The optimal treatment is unknown. We examined the effectiveness of conservative treatments for secondary lymphedema, as well as harms related to these treatments.</p> <p>Methods</p> <p>We searched MEDLINE<sup>®</sup>, EMBASE<sup>®</sup>, Cochrane Central Register of Controlled Trials<sup>®</sup>, AMED, and CINAHL from 1990 to January 19, 2010. We obtained English- and non-English-language randomized controlled trials or observational studies (with comparison groups) that reported primary effectiveness data on conservative treatments for secondary lymphedema. For English-language studies, we extracted data in tabular form and summarized the tables descriptively. For non-English-language studies, we summarized the results descriptively and discussed similarities with the English-language studies.</p> <p>Results</p> <p>Thirty-six English-language and eight non-English-language studies were included in the review. Most of these studies involved upper-limb lymphedema secondary to breast cancer. Despite lymphedema's chronicity, lengths of follow-up in most studies were under 6 months. Many trial reports contained inadequate descriptions of randomization, blinding, and methods to assess harms. Most observational studies did not control for confounding. Many studies showed that active treatments reduced the size of lymphatic limbs, although extensive between-study heterogeneity in areas such as treatment comparisons and protocols, and outcome measures, prevented us from assessing whether any one treatment was superior. This heterogeneity also precluded us from statistically pooling results. Harms were rare (< 1% incidence) and mostly minor (e.g., headache, arm pain).</p> <p>Conclusions</p> <p>The literature contains no evidence to suggest the most effective treatment for secondary lymphedema. Harms are few and unlikely to cause major clinical problems.</p

    Neuroimaging in Dementia

    Get PDF
    Dementia is a common illness with an incidence that is rising as the aged population increases. There are a number of neurodegenerative diseases that cause dementia, including Alzheimer’s disease, dementia with Lewy bodies, and frontotemporal dementia, which is subdivided into the behavioral variant, the semantic variant, and nonfluent variant. Numerous other neurodegenerative illnesses have an associated dementia, including corticobasal degeneration, Creutzfeldt–Jakob disease, Huntington’s disease, progressive supranuclear palsy, multiple system atrophy, Parkinson’s disease dementia, and amyotrophic lateral sclerosis. Vascular dementia and AIDS dementia are secondary dementias. Diagnostic criteria have relied on a constellation of symptoms, but the definite diagnosis remains a pathologic one. As treatments become available and target specific molecular abnormalities, differentiating amongst the various primary dementias early on becomes essential. The role of imaging in dementia has traditionally been directed at ruling out treatable and reversible etiologies and not to use imaging to better understand the pathophysiology of the different dementias. Different brain imaging techniques allow the examination of the structure, biochemistry, metabolic state, and functional capacity of the brain. All of the major neurodegenerative disorders have relatively specific imaging findings that can be identified. New imaging techniques carry the hope of revolutionizing the diagnosis of neurodegenerative disease so as to obtain a complete molecular, structural, and metabolic characterization, which could be used to improve diagnosis and to stage each patient and follow disease progression and response to treatment. Structural and functional imaging modalities contribute to the diagnosis and understanding of the different dementias
    corecore