10 research outputs found

    Matrix metalloproteinase-2 activity, protein, mRNA, and tissue inhibitors in small arteries from pregnant and relaxin-treated nonpregnant rats

    No full text
    Vascular gelatinase activity is essential for pregnancy- and relaxin (Rlx)-induced renal vasodilation and hyperfiltration in rats. The objective of this study was to further elucidate the mechanisms for the increase in vascular matrix metalloproteinase (MMP)-2 activity caused by pregnancy and Rlx. We first corroborated our earlier work by showing that pro- and active forms of MMP-2 were increased in small renal arteries from pregnant compared with virgin rats and Rlx-treated compared with vehicle-treated nonpregnant rats. We next investigated other artery types and showed that MMP-2 activity was upregulated in mesenteric arteries from pregnant rats (pro-MMP-2 by 50% and active MMP-2 by 40%, both P<0.05) and from Rlx-treated nonpregnant rats (pro-MMP-2 by 50% and active MMP-2 by 90%, both P<0.005) compared with their respective controls. To corroborate these results obtained by gelatin zymography, pro-MMP-2 protein was determined by Western analysis in the same small arteries. Pro-MMP-2 protein was increased in small renal arteries from pregnant compared with virgin rats and from Rlx- compared with vehicle-treated nonpregnant rats: pro-MMP-2-to-beta-actin ratio=0.29 vs. 0.21 (P<0.01) and 0.43 vs. 0.32 (P<0.005). Findings were similar for mesenteric arteries. MMP-2 mRNA as measured by real-time PCR was increased in small renal arteries from pregnant and Rlx-treated nonpregnant rats compared with their respective controls. There were no significant differences in tissue inhibitor of metalloproteinase (TIMP-1 or TIMP-2) activity by reverse zymography in small renal arteries. Thus increases in MMP-2 mRNA and protein expression are major factors contributing to increased MMP-2 activity in small arteries from pregnant and Rlx-treated nonpregnant rats

    Efficacy and safety of vamorolone in Duchenne muscular dystrophy: An 18-month interim analysis of a non-randomized open-label extension study.

    No full text
    BackgroundTreatment with corticosteroids is recommended for Duchenne muscular dystrophy (DMD) patients to slow the progression of weakness. However, chronic corticosteroid treatment causes significant morbidities. Vamorolone is a first-in-class anti-inflammatory investigational drug that has shown evidence of efficacy in DMD after 24 weeks of treatment at 2.0 or 6.0 mg/kg/day. Here, open-label efficacy and safety experience of vamorolone was evaluated over a period of 18 months in trial participants with DMD.Methods and findingsA multicenter, open-label, 24-week trial (VBP15-003) with a 24-month long-term extension (VBP15-LTE) was conducted by the Cooperative International Neuromuscular Research Group (CINRG) and evaluated drug-related effects of vamorolone on motor outcomes and corticosteroid-associated safety concerns. The study was carried out in Canada, US, UK, Australia, Sweden, and Israel, from 2016 to 2019. This report covers the initial 24-week trial and the first 12 months of the VBP15-LTE trial (total treatment period 18 months). DMD trial participants (males, 4 to ConclusionsWe observed that vamorolone treatment was associated with improvements in some motor outcomes as compared with corticosteroid-naïve individuals over an 18-month treatment period. We found that fewer physician-reported AEs occurred with vamorolone than have been reported for treatment with prednisone and deflazacort, and that vamorolone treatment did not cause the stunting of growth seen with these corticosteroids. This Phase IIa study provides Class III evidence to support benefit of motor function in young boys with DMD treated with vamorolone 2.0 to 6.0 mg/kg/day, with a favorable safety profile. A Phase III RCT is underway to further investigate safety and efficacy.Trial registrationClinical trials were registered at www.clinicaltrials.gov, and the links to each trial are as follows (as provided in manuscript text): VBP15-002 [NCT02760264] VBP15-003 [NCT02760277] VBP15-LTE [NCT03038399]

    Chromosome Xq23 is associated with lower atherogenic lipid concentrations and favorable cardiometabolic indices

    No full text
    Abstract Autosomal genetic analyses of blood lipids have yielded key insights for coronary heart disease (CHD). However, X chromosome genetic variation is understudied for blood lipids in large sample sizes. We now analyze genetic and blood lipid data in a high-coverage whole X chromosome sequencing study of 65,322 multi-ancestry participants and perform replication among 456,893 European participants. Common alleles on chromosome Xq23 are strongly associated with reduced total cholesterol, LDL cholesterol, and triglycerides (min P = 8.5 × 10−72), with similar effects for males and females. Chromosome Xq23 lipid-lowering alleles are associated with reduced odds for CHD among 42,545 cases and 591,247 controls (P = 1.7 × 10−4), and reduced odds for diabetes mellitus type 2 among 54,095 cases and 573,885 controls (P = 1.4 × 10−5). Although we observe an association with increased BMI, waist-to-hip ratio adjusted for BMI is reduced, bioimpedance analyses indicate increased gluteofemoral fat, and abdominal MRI analyses indicate reduced visceral adiposity. Co-localization analyses strongly correlate increased CHRDL1 gene expression, particularly in adipose tissue, with reduced concentrations of blood lipids

    Glutamate Receptors

    No full text

    A Conceptualization of Integrated Actions of Ethanol Contributing to its GABAmimetic Profile: A Commentary

    No full text

    Chromosome Xq23 is associated with lower atherogenic lipid concentrations and favorable cardiometabolic indices

    No full text
    corecore