468 research outputs found

    Conversion Matrix Method of Moments for Time-Varying Electromagnetic Analysis

    Full text link
    A conversion matrix approach to solving network problems involving time-varying circuit components is applied to the method of moments for electromagnetic scattering analysis. Detailed formulations of this technique's application to the scattering analysis of structures loaded with time-varying circuit networks or constructed from general time-varying media are presented. The computational cost of the method is discussed, along with an analysis of compression techniques capable of significantly reducing computational cost for partially loaded systems. Several numerical examples demonstrate the capabilities of the technique along with its validation against conventional methods of modeling time-varying electromagnetic systems, such as finite difference time domain and transient circuit co-simulation.Comment: 11 pages, 11 figure

    Using ordinal logistic regression to evaluate the performance of laser-Doppler predictions of burn-healing time

    Get PDF
    Background Laser-Doppler imaging (LDI) of cutaneous blood flow is beginning to be used by burn surgeons to predict the healing time of burn wounds; predicted healing time is used to determine wound treatment as either dressings or surgery. In this paper, we do a statistical analysis of the performance of the technique. Methods We used data from a study carried out by five burn centers: LDI was done once between days 2 to 5 post burn, and healing was assessed at both 14 days and 21 days post burn. Random-effects ordinal logistic regression and other models such as the continuation ratio model were used to model healing-time as a function of the LDI data, and of demographic and wound history variables. Statistical methods were also used to study the false-color palette, which enables the laser-Doppler imager to be used by clinicians as a decision-support tool. Results Overall performance is that diagnoses are over 90% correct. Related questions addressed were what was the best blood flow summary statistic and whether, given the blood flow measurements, demographic and observational variables had any additional predictive power (age, sex, race, % total body surface area burned (%TBSA), site and cause of burn, day of LDI scan, burn center). It was found that mean laser-Doppler flux over a wound area was the best statistic, and that, given the same mean flux, women recover slightly more slowly than men. Further, the likely degradation in predictive performance on moving to a patient group with larger %TBSA than those in the data sample was studied, and shown to be small. Conclusion Modeling healing time is a complex statistical problem, with random effects due to multiple burn areas per individual, and censoring caused by patients missing hospital visits and undergoing surgery. This analysis applies state-of-the art statistical methods such as the bootstrap and permutation tests to a medical problem of topical interest. New medical findings are that age and %TBSA are not important predictors of healing time when the LDI results are known, whereas gender does influence recovery time, even when blood flow is controlled for. The conclusion regarding the palette is that an optimum three-color palette can be chosen 'automatically', but the optimum choice of a 5-color palette cannot be made solely by optimizing the percentage of correct diagnoses

    Anaerobic Carbon Monoxide Dehydrogenase Diversity in the Homoacetogenic Hindgut Microbial Communities of Lower Termites and the Wood Roach

    Get PDF
    Anaerobic carbon monoxide dehydrogenase (CODH) is a key enzyme in the Wood-Ljungdahl (acetyl-CoA) pathway for acetogenesis performed by homoacetogenic bacteria. Acetate generated by gut bacteria via the acetyl-CoA pathway provides considerable nutrition to wood-feeding dictyopteran insects making CODH important to the obligate mutualism occurring between termites and their hindgut microbiota. To investigate CODH diversity in insect gut communities, we developed the first degenerate primers designed to amplify cooS genes, which encode the catalytic (β) subunit of anaerobic CODH enzyme complexes. These primers target over 68 million combinations of potential forward and reverse cooS primer-binding sequences. We used the primers to identify cooS genes in bacterial isolates from the hindgut of a phylogenetically lower termite and to sample cooS diversity present in a variety of insect hindgut microbial communities including those of three phylogenetically-lower termites, Zootermopsis nevadensis, Reticulitermes hesperus, and Incisitermes minor, a wood-feeding cockroach, Cryptocercus punctulatus, and an omnivorous cockroach, Periplaneta americana. In total, we sequenced and analyzed 151 different cooS genes. These genes encode proteins that group within one of three highly divergent CODH phylogenetic clades. Each insect gut community contained CODH variants from all three of these clades. The patterns of CODH diversity in these communities likely reflect differences in enzyme or physiological function, and suggest that a diversity of microbial species participate in homoacetogenesis in these communities

    Macrocyclisation of small peptides enabled by oxetane incorporation

    Get PDF
    Cyclic peptides are an important source of new drugs but are challenging to produce synthetically. We show that head-to-tail peptide macrocyclisations are greatly improved, as measured by isolated yields, reaction rates and product distribution, by substitution of one of the backbone amide C═O bonds with an oxetane ring. The cyclisation precursors are easily made by standard solution- or solid-phase peptide synthesis techniques. Macrocyclisations across a range of challenging ring sizes (tetra-, penta- and hexapeptides) are enabled by incorporation of this turn-inducing element. Oxetane incorporation is shown to be superior to other established amino acid modifications such as N-methylation. The positional dependence of the modification on cyclisation efficiency is mapped using a cyclic peptide of sequence LAGAY. We provide the first direct experimental evidence that oxetane modification induces a turn in linear peptide backbones, through the observation of dNN (i, i + 2) and dαN (i, i + 2) NOEs, which offers an explanation for these improvements. For cyclic peptide, cLAGAY, a combination of NMR derived distance restraints and molecular dynamics simulations are used to show that this modification alters the backbone conformation in proximity to the oxetane, with the flexibility of the ring reduced and a new intramolecular H-bond established. Finally, we incorporated an oxetane into a cyclic pentapeptide inhibitor of Aminopeptidase N, a transmembrane metalloprotease overexpressed on the surface of cancer cells. The inhibitor, cCNGRC, displayed similar IC50 values in the presence or absence of an oxetane at the glycine residue, indicating that bioactivity is fully retained upon amide C═O bond replacement

    Genetic mapping of microbial and host traits reveals production of immunomodulatory lipids by Akkermansia muciniphila in the murine gut.

    Get PDF
    The molecular bases of how host genetic variation impacts the gut microbiome remain largely unknown. Here we used a genetically diverse mouse population and applied systems genetics strategies to identify interactions between host and microbe phenotypes including microbial functions, using faecal metagenomics, small intestinal transcripts and caecal lipids that influence microbe-host dynamics. Quantitative trait locus (QTL) mapping identified murine genomic regions associated with variations in bacterial taxa; bacterial functions including motility, sporulation and lipopolysaccharide production and levels of bacterial- and host-derived lipids. We found overlapping QTL for the abundance of Akkermansia muciniphila and caecal levels of ornithine lipids. Follow-up in vitro and in vivo studies revealed that A. muciniphila is a major source of these lipids in the gut, provided evidence that ornithine lipids have immunomodulatory effects and identified intestinal transcripts co-regulated with these traits including Atf3, which encodes for a transcription factor that plays vital roles in modulating metabolism and immunity. Collectively, these results suggest that ornithine lipids are potentially important for A. muciniphila-host interactions and support the role of host genetics as a determinant of responses to gut microbes

    Effect of subunit on allosteric modulation of ion channel function in stably expressed human recombinant -aminobutyric acidA receptors determined using 36Cl ion flux.

    Get PDF
    ABSTRACT Inhibitory ␥-aminobutyric acid (GABA) A receptors are subject to modulation at a variety of allosteric sites, with pharmacology dependent on receptor subunit combination. The influence of different ␣ subunits in combination with ␤3␥2s was examined in stably expressed human recombinant GABA A receptors by measuring 36 Cl influx through the ion channel pore. Muscimol and GABA exhibited similar maximal efficacy at each receptor subtype, although muscimol was more potent, with responses blocked by picrotoxin and bicuculline. Receptors containing the ␣3 subunit exhibited slightly lower potency. The comparative pharmacology of a range of benzodiazepine site ligands was examined, revealing a range of intrinsic efficacies at different receptor subtypes. Of the diazepam-sensitive GABA A receptors (␣1, ␣2, ␣3, ␣5), ␣5 showed the most divergence, being discriminated by zolpidem in terms of very low affinity, and CL218,872 and CGS9895 with different efficacies. Benzodiazepine potentiation at ␣3␤3␥2s with nonselective agonist chlordiazepoxide was greater than at ␣1, ␣2, or ␣5 (P Ͻ 0.001). The presence of an ␣4 subunit conferred a unique pharmacological profile. The partial agonist bretazenil was the most efficacious benzodiazepine, despite lower ␣4 affinity, and FG8205 displayed similar efficacy. Most striking were the lack of affinity/ efficacy for classical benzodiazepines and the relatively high efficacy of Ro15-1788 (53 Ϯ 12%), CGS8216 (56 Ϯ 6%), CGS9895 (65 Ϯ 6%), and the weak partial inverse agonist Ro15-4513 (87 Ϯ 5%). Each receptor subtype was modulated by pentobarbital, loreclezole, and 5␣-pregnan-3␣-ol-20-one, but the type of ␣ subunit influenced the level of potentiation. The maximal pentobarbital response was significantly greater at ␣4␤3␥2s (226 Ϯ 10% increase in the EC 20 response to GABA) than any other modulator. The rank order of potentiation for pregnanolone was ␣5 Ͼ ␣2 Ͼ ␣3 ϭ ␣4 Ͼ ␣1, for loreclezole ␣1 ϭ ␣2 ϭ ␣3 Ͼ ␣5 Ͼ ␣4, and for pentobarbital ␣4 ϭ ␣5 ϭ ␣2 Ͼ ␣1 ϭ ␣3

    Visual Analytics for Epidemiologists: Understanding the Interactions Between Age, Time, and Disease with Multi-Panel Graphs

    Get PDF
    Visual analytics, a technique aiding data analysis and decision making, is a novel tool that allows for a better understanding of the context of complex systems. Public health professionals can greatly benefit from this technique since context is integral in disease monitoring and biosurveillance. We propose a graphical tool that can reveal the distribution of an outcome by time and age simultaneously.We introduce and demonstrate multi-panel (MP) graphs applied in four different settings: U.S. national influenza-associated and salmonellosis-associated hospitalizations among the older adult population (≥65 years old), 1991-2004; confirmed salmonellosis cases reported to the Massachusetts Department of Public Health for the general population, 2004-2005; and asthma-associated hospital visits for children aged 0-18 at Milwaukee Children's Hospital of Wisconsin, 1997-2006. We illustrate trends and anomalies that otherwise would be obscured by traditional visualization techniques such as case pyramids and time-series plots.MP graphs can weave together two vital dynamics--temporality and demographics--that play important roles in the distribution and spread of diseases, making these graphs a powerful tool for public health and disease biosurveillance efforts

    Extrinsic Fluorescent Dyes as Tools for Protein Characterization

    Get PDF
    Noncovalent, extrinsic fluorescent dyes are applied in various fields of protein analysis, e.g. to characterize folding intermediates, measure surface hydrophobicity, and detect aggregation or fibrillation. The main underlying mechanisms, which explain the fluorescence properties of many extrinsic dyes, are solvent relaxation processes and (twisted) intramolecular charge transfer reactions, which are affected by the environment and by interactions of the dyes with proteins. In recent time, the use of extrinsic fluorescent dyes such as ANS, Bis-ANS, Nile Red, Thioflavin T and others has increased, because of their versatility, sensitivity and suitability for high-throughput screening. The intention of this review is to give an overview of available extrinsic dyes, explain their spectral properties, and show illustrative examples of their various applications in protein characterization
    corecore