492 research outputs found

    Reclaiming White Privilege: The Crisis of White Masculinity in Post-World War II American Literature

    Get PDF
    This thesis examines the ways in which post-World War II American literature written by white men responded to the Civil Rights and Feminist movements that called for equality during the 1950s, 1960s, and 1970s in the United States. I argue that these movements led to a crisis of white male identity, as white men saw their privileged position within American society being questioned. I chart this crisis of white masculinity in the fiction of three white male American novelists: John Updike, Saul Bellow, and Philip Roth. Contrary to what current scholarship on these authors has proposed, I suggest that their novels, while purportedly espousing the ideals of the above movements, in truth defend and reinscribe white masculinity through a variety of ways. In Chapter 1, I argue that Updike’s Rabbit Redux (1971), Roth’s American Pastoral (1997) and Bellow’s Mr. Sammler’s Planet (1970) ostensibly show support for the African American cause but upon closer inspection re-establish white privilege and restore the destabilised societal position of white Americans in the context of Civil Rights by merging white identity with that of African Americans. In Chapter 2, focusing on Updike’s Rabbit Redux, Bellow’s Herzog (1964), and Roth’s Sabbath’s Theater (1995), I argue that these novels caricature second-wave feminism as a way of reinstating the social hierarchies that placed men at the top of American society. In Chapter 3, I propose that Updike’s Rabbit, Run (1960), Roth’s American Pastoral, and Bellow’s Herzog turn to religious morality in order to revitalise the privileged position of white masculinity. Reading these novels in this manner, I show how they associate white masculinity with moral goodness in order to pull it out of its postwar crisis

    Non-Volatile Memory Characteristics of Submicrometre Hall Structures Fabricated in Epitaxial Ferromagnetic MnAl Films on GaAs

    Get PDF
    Hall-effect structures with submicrometre linewidths (<0.3pm) have been fabricated in ferromagnetic thin films of Mn[sub 0.60]Al[sub 0.40] which are epitaxially grown on a GaAs substrate. The MnAl thin films exhibit a perpendicular remanent magnetisation and an extraordinary Hall effect with square hysteretic behaviour. The presence of two distinct stable readout states demonstrates the potential of using ultrasmall ferromagnetic volumes for electrically addressable, nonvolatile storage of digital information

    The extraordinary Hall effect in coherent epitaxial tau (Mn,Ni)Al thin films on GaAs

    Get PDF
    Ultrathin coherent epitaxial films of ferromagnetic tau(Mn,Ni)0.60Al0.40 have been grown by molecular beam epitaxy on GaAs substrates. X-ray scattering and cross-sectional transmission electron microscopy measurements confirm that the c axis of the tetragonal tau unit cell is aligned normal to the (001) GaAs substrate. Measurements of the extraordinary Hall effect (EHE) show that the films are perpendicularly magnetized, exhibiting EHE resistivities saturating in the range of 3.3-7.1 muOMEGA-cm at room temperature. These values of EHE resistivity correspond to signals as large as +7 and -7 mV for the two magnetic states of the film with a measurement current of 1 mA. Switching between the two magnetic states is found to occur at distinct field values that depend on the previously applied maximum field. These observations suggest that the films are magnetically uniform. As such, tau(Mn,Ni)Al films may be an excellent medium for high-density storage of binary information

    Epitaxial-tau(Mn,Ni)Al/(Al,Ga)As heterostructures: Magnetic and magneto-optic properties

    Get PDF
    Ferromagnetic Perpendicularly magnetized epitaxial thin films of tau (Mn,Ni)AI have been successfully grown on AlAs/GaAs heterostructures by molecular beam epitaxy. We have investigated the polar Kerr rotation and magnetization of tau MnAl and (Mn,Ni) Al as a function of Mn and Ni concentration. The largest polar Kerr rotation and remnant magnetization were obtained for Mn0.5Al0.5 thin films with values of 0.16-degrees and 224 emu/cm3, respectively. We observed that the Kerr rotation and magnetization remained constant with Ni additions up to about 12 at. % and subsequently decreased with further Ni additions. We discuss these results and one possible method of enhancing the Kerr rotation

    Insulin-mimetic action of vanadium compounds on osteoblast-like cells in culture

    Get PDF
    Vanadium compounds mimic insulin actions in different cell types. The present study concerns the insulin-like effects of three vanadium(V) derivatives and one vanadium(IV) complex on osteoblast-like (UMR106 and MC3T3E1) cells in culture. The vanadium oxalate and vanadium citrate complexes hydrolyzed completely under the culture conditions, whereas more than 40% of the vanadium tartrate and nitrilotriacetate complexes remained. Vanadate, as well as vanadium oxalate, citrate, and tartrate complexes enhanced cell proliferation (as measured by the crystal violet assay), glucose consumption, and protein content in UMR106 and MC3T3E1 osteoblast-like cells. The vanadium nitrilotriacetate complex (the only peroxo complex tested) stimulated cell proliferation in UMR106 but not in MC3T3E1 cells. This derivative strongly transformed the morphology of the MC3T3E1 cells. All vanadium(V) compounds inhibited cell differentiation (alkaline phosphatase activity) in UMR106 cells. Our data are consistent with the interpretation that vanadium oxalate and citrate complexes hydrolyze to vanadate. Vanadium nitrilotriacetate would appear to be toxic for normal MC3T3E1 osteoblasts. In contrast, the vanadium tartrate complex induced a proliferative effect; however, it did not alter cell differentiation

    Insulin-mimetic action of vanadium compounds on osteoblast-like cells in culture

    Get PDF
    Vanadium compounds mimic insulin actions in different cell types. The present study concerns the insulin-like effects of three vanadium(V) derivatives and one vanadium(IV) complex on osteoblast-like (UMR106 and MC3T3E1) cells in culture. The vanadium oxalate and vanadium citrate complexes hydrolyzed completely under the culture conditions, whereas more than 40% of the vanadium tartrate and nitrilotriacetate complexes remained. Vanadate, as well as vanadium oxalate, citrate, and tartrate complexes enhanced cell proliferation (as measured by the crystal violet assay), glucose consumption, and protein content in UMR106 and MC3T3E1 osteoblast-like cells. The vanadium nitrilotriacetate complex (the only peroxo complex tested) stimulated cell proliferation in UMR106 but not in MC3T3E1 cells. This derivative strongly transformed the morphology of the MC3T3E1 cells. All vanadium(V) compounds inhibited cell differentiation (alkaline phosphatase activity) in UMR106 cells. Our data are consistent with the interpretation that vanadium oxalate and citrate complexes hydrolyze to vanadate. Vanadium nitrilotriacetate would appear to be toxic for normal MC3T3E1 osteoblasts. In contrast, the vanadium tartrate complex induced a proliferative effect; however, it did not alter cell differentiation.Facultad de Ciencias Exacta

    Insulin-mimetic action of vanadium compounds on osteoblast-like cells in culture

    Get PDF
    Vanadium compounds mimic insulin actions in different cell types. The present study concerns the insulin-like effects of three vanadium(V) derivatives and one vanadium(IV) complex on osteoblast-like (UMR106 and MC3T3E1) cells in culture. The vanadium oxalate and vanadium citrate complexes hydrolyzed completely under the culture conditions, whereas more than 40% of the vanadium tartrate and nitrilotriacetate complexes remained. Vanadate, as well as vanadium oxalate, citrate, and tartrate complexes enhanced cell proliferation (as measured by the crystal violet assay), glucose consumption, and protein content in UMR106 and MC3T3E1 osteoblast-like cells. The vanadium nitrilotriacetate complex (the only peroxo complex tested) stimulated cell proliferation in UMR106 but not in MC3T3E1 cells. This derivative strongly transformed the morphology of the MC3T3E1 cells. All vanadium(V) compounds inhibited cell differentiation (alkaline phosphatase activity) in UMR106 cells. Our data are consistent with the interpretation that vanadium oxalate and citrate complexes hydrolyze to vanadate. Vanadium nitrilotriacetate would appear to be toxic for normal MC3T3E1 osteoblasts. In contrast, the vanadium tartrate complex induced a proliferative effect; however, it did not alter cell differentiation.Facultad de Ciencias Exacta

    Cobalt(II), nickel(II) and zinc(II) coordination chemistry of the N , N ′-disubstituted hydroxylamine-(diamido) ligand, 3,3′-(hydroxyazanediyl)dipropanamide

    Get PDF
    Although directly relevant to metal mediated biological nitrification and the coordination chemistry of peroxide, the transition metal complexes of hydroxylamines and their functionalized variants remain mainly unexplored except vanadium(V) and molybdenum(VI). Reaction of the chelating hydroxylamine ligand 3,3′-(hydroxyazanediyl)dipropanamide (Hhydia) with [MII(CH3COO)2]·xH2O (M = CoII, ZnII) in methyl alcohol solution yields the complexes [CoII(η1:η1-CH3COO)(η1-CH3COO)(Hhydia)], (1) and [ZnII(η1-CH3COO)2(Hhydia)], (4), while reaction of Hhydia with trans-[NiIICl2(H2O)4]·2H2O yields [NiII(Hhydia)2]Cl2 (3). The X-ray structure analysis of 1 and 4 revealed that the CoII and ZnII atoms are bonded to a neutral tridentate O,N,O-Hhydia ligand and a chelate and a monodentate acetate groups in a severely distorted octahedral geometry for 1 and two monodentate acetate groups for 4 in a highly distorted trigonal bipyramidal geometry (τ = 0.63). The X-ray structure analysis of 3 revealed that the nickel atom in [NiII(Hhydia)2]2+ is bonded to two neutral tridentate O,N,O-Hhydia ligands. The twist angle, θ, in [NiII(Hhydia)2]2+ is 55.1(2)°, that is, very close to an ideal octahedron. The metal/Hhydia complexes were studied by UV–Vis (cobalt and nickel compounds), NMR (zinc compounds), HR-MS spectroscopy. The 1H and 13C NMR spectra of the methyl alcohol or acetonitrile solutions of ZnII-Hhydia complexes show the existence of both the 1:1 and 1:2 metal:ligand species being in dynamic equilibrium. The exchange processes between the ZnII-Hhydia is through complete dissociation-association of the ligand from the complexes as it is evident from the 2D {1H} EXSY NMR spectroscopy. UV–Vis spectroscopy of the CoII-Hhydia in methyl alcohol also shows the existence of both the 1:1 and 1:2 metal:ligand species in contrast to 1:2 complex [NiII(Hhydia)2]2+ which is the only species found in solution. The NMR and UV–Vis observations are additionally supported by the HR-MS studies

    Taurine is a potent activator of extrasynaptic GABAA receptors in the thalamus

    Get PDF
    Taurine is one of the most abundant free amino acids in the brain. In a number of studies, taurine has been reported to activate glycine receptors (Gly-Rs) at moderate concentrations (>= 100 mu M), and to be a weak agonist at GABA(A) receptors (GABA(A)-Rs), which are usually activated at high concentrations (>= 1 mM). In this study, we show that taurine reduced the excitability of thalamocortical relay neurons and activated both extrasynaptic GABAA-Rs and Gly-Rs in neurons in the mouse ventrobasal (VB) thalamus. Low concentrations of taurine (10 - 100 mu M) decreased neuronal input resistance and firing frequency, and elicited a steady outward current under voltage clamp, but had no effects on fast inhibitory synaptic currents. Currents elicited by 50 mu M taurine were abolished by gabazine, insensitive to midazolam, and partially blocked by 20 mu M Zn2+, consistent with the pharmacological properties of extrasynaptic GABA(A)-Rs (alpha 4 beta 2 delta subtype) involved in tonic inhibition in the thalamus. Tonic inhibition was enhanced by an inhibitor of taurine transport, suggesting that taurine can act as an endogenous activator of these receptors. Taurine-evoked currents were absent in relay neurons from GABA(A)-R alpha 4 subunit knock-out mice. The amplitude of the taurine current was larger in neurons from adult mice than juvenile mice. Taurine was a more potent agonist at recombinant alpha(4)beta 2 delta GABA(A)-Rs than at alpha 1 beta 2 gamma 2 GABA(A)-Rs. We conclude that physiological concentrations of taurine can inhibit VB neurons via activation of extrasynaptic GABA(A)-Rs and that taurine may function as an endogenous regulator of excitability and network activity in the thalamus
    corecore