8 research outputs found

    Insecticide resistance in Anopheles gambiae: data from the first year of a multi-country study highlight the extent of the problem

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Insecticide resistance in malaria vectors is a growing concern in many countries which requires immediate attention because of the limited chemical arsenal available for vector control. The current extent and distribution of this resistance in many parts of the continent is unknown and yet such information is essential for the planning of effective malaria control interventions.</p> <p>Methods</p> <p>In 2008, a network was established, with financial support from WHO/TDR, to investigate the extent of insecticide resistance in malaria vectors in five African countries. Here, the results of bioassays on <it>Anopheles gambiae sensu lato </it>from two rounds of monitoring from 12 sentinel sites in three of the partner countries are reported.</p> <p>Results</p> <p>Resistance is very heterogeneous even over relatively small distances. Furthermore, in some sites, large differences in mortality rates were observed during the course of the malaria transmission season. Using WHO diagnostic doses, all populations from Burkina Faso and Chad and two of the four populations from Sudan were classified as resistant to permethrin and/or deltamethrin. Very high frequencies of DDT resistance were found in urban areas in Burkina Faso and Sudan and in a cotton-growing district in Chad. In areas where both <it>An. gambiae s.s</it>. and <it>Anopheles arabiensis </it>were present, resistance was found in both species, although generally at a higher frequency in <it>An gambiae s.s</it>. <it>Anopheles gambiae s.l</it>. remains largely susceptible to the organophosphate fenitrothion and the carbamate bendiocarb in the majority of the sentinel sites with the exception of two sites in Burkina Faso. In the cotton-growing region of Soumousso in Burkina Faso, the vector population is resistant to all four classes of insecticide available for malaria control.</p> <p>Conclusions</p> <p>Possible factors influencing the frequency of resistant individuals observed in the sentinel sites are discussed. The results of this study highlight the importance of standardized longitudinal insecticide resistance monitoring and the urgent need for studies to monitor the impact of this resistance on malaria vector control activities.</p

    Malaria vectors and transmission dynamics in Goulmoun, a rural city in south-western Chad

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Knowledge of some baseline entomological data such as Entomological Inoculation Rates (EIR) is crucially needed to assess the epidemiological impact of malaria control activities directed either against parasites or vectors. In Chad, most published surveys date back to the 1960's. In this study, anopheline species composition and their relation to malaria transmission were investigated in a dry Sudanian savannas area of Chad.</p> <p>Methods</p> <p>A 12-month longitudinal survey was conducted in the irrigated rice-fields area of Goulmoun in south western Chad. Human landing catches were performed each month from July 2006 to June 2007 in three compounds (indoors and outdoors) and pyrethrum spray collections were conducted in July, August and October 2006 in 10 randomly selected rooms. Mosquitoes belonging to the <it>Anopheles gambiae </it>complex and to the <it>An. funestus </it>group were identified by molecular diagnostic tools. <it>Plasmodium falciparum </it>infection and blood meal sources were detected by ELISA.</p> <p>Results</p> <p>Nine anopheline species were collected by the two sampling methods. The most aggressive species were <it>An. arabiensis </it>(51 bites/human/night), <it>An. pharoensis </it>(12.5 b/h/n), <it>An. funestus </it>(1.5 b/h/n) and <it>An. ziemanni </it>(1.3 b/h/n). The circumsporozoite protein rate was 1.4% for <it>An. arabiensis</it>, 1.4% for <it>An. funestus</it>, 0.8% for <it>An. pharoensis </it>and 0.5% for <it>An. ziemanni</it>. Malaria transmission is seasonal, lasting from April to December. However, more than 80% of the total EIR was concentrated in the period from August to October. The overall annual EIR was estimated at 311 bites of infected anophelines/human/year, contributed mostly by <it>An. arabiensis </it>(84.5%) and <it>An. pharoensis </it>(12.2%). <it>Anopheles funestus </it>and <it>An. ziemanni </it>played a minor role. Parasite inoculation occurred mostly after 22:00 hours but around 20% of bites of infected anophelines were distributed earlier in the evening.</p> <p>Conclusion</p> <p>The present study revealed the implication of <it>An. pharoensis </it>in malaria transmission in the irrigated rice fields of Goulmoun, complementing the major role played by <it>An. arabiensis</it>. The transmission period did not depend upon irrigation. Correct use of insecticide treated nets in this area may be effective for vector control although additional protective measures are needed to prevent pre-bedtime exposure to the bites of infected anophelines.</p

    Insecticide resistance in Anopheles gambiae from south-western Chad, Central Africa

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Indoor residual spraying and insecticide-treated nets (ITN) are essential components of malaria vector control in Africa. Pyrethroids are the only recommended compounds for nets treatment because they are fast-acting insecticides with low mammalian toxicity. However, there is growing concern that pyrethroid resistance may threaten the sustainability of ITN scaling-up programmes. Here, insecticide susceptibility was investigated in <it>Anopheles gambiae </it>sensu lato from an area of large scale ITN distribution programme in south-western Chad.</p> <p>Methods</p> <p>Susceptibility to 4% DDT, 0.05% deltamethrin, 0.75% permethrin, 0.1% bendiocarb and 5% malathion was assessed using the WHO standard procedures for adult mosquitoes. Tests were carried out with two to four days-old, non-engorged female mosquitoes. The <it>An. gambiae </it>Kisumu strain was used as a reference. Knockdown effect was recorded every 5 min and mortality scored 24 h after exposure. Mosquitoes were identified to species and molecular form by PCR-RFLP and genotypes at the <it>kdr </it>locus were determined in surviving specimens by Hot Oligonucleotide Ligation Assay (HOLA).</p> <p>Results</p> <p>During this survey, full susceptibility to malathion was recorded in all samples. Reduced susceptibility to bendiocarb (mortality rate of 96.1%) was found in one sample out of nine assayed. Increased tolerance to pyrethroids was detected in most samples (8/9) with mortality rates ranging from 70.2 to 96.6% for deltamethrin and from 26.7 to 96.3% for permethrin. Pyrethroid tolerance was not associated with a significant increase of knock-down times. <it>Anopheles arabiensis </it>was the predominant species of the <it>An. gambiae </it>complex in the study area, representing 75 to 100% of the samples. Screening for <it>kdr </it>mutations detected the L1014F mutation in 88.6% (N = 35) of surviving <it>An</it>. <it>gambiae </it>sensu stricto S form mosquitoes. All surviving <it>An. arabiensis </it>(N = 49) and M form <it>An</it>. <it>gambiae </it>s.s. (N = 1) carried the susceptible allele.</p> <p>Conclusion</p> <p>This first investigation of malaria vector susceptibility to insecticides in Chad revealed variable levels of resistance to pyrethroid insecticides (permethrin and deltamethrin) in most <it>An</it>. <it>gambiae </it>s.l. populations. Resistance was associated with the L1014F <it>kdr </it>mutation in the S form of <it>An. gambiae </it>s.s.. Alternative mechanisms, probably of metabolic origin are involved in <it>An. arabiensis</it>. These results emphasize the crucial need for insecticide resistance monitoring and in-depth investigation of resistance mechanisms in malaria vectors in Chad. The impact of reduced susceptibility to pyrethroids on ITN efficacy should be further assessed.</p

    Trends in DDT and pyrethroid resistance in Anopheles gambiae s.s. populations from urban and agro-industrial settings in southern Cameroon

    Get PDF
    Background: Pyrethroid insecticides are widely used for insect pest control in Cameroon. In certain insect species, particularly the malaria vector Anopheles gambiae, resistance to this class of insecticides is a source of great concern and needs to be monitored in order to sustain the efficacy of vector control operations in the fields. This study highlights trends in DDT and pyrethroid resistance in wild An. gambiae populations from South Cameroon. Methods: Mosquitoes were collected between 2001 and 2007 in four sites in South Cameroon, where insecticides are used for agricultural or personal protection purposes. Insecticide use was documented in each site by interviewing residents. Batches of 2-4 days old adult female mosquitoes reared from larval collections were tested for susceptibility to DDT, permethrin and deltamethrin using standard WHO procedures. Control, dead and survivors mosquitoes from bioassays were identified by PCR-RFLP and characterized for the kdr mutations using either the AS-PCR or the HOLA method. Results: Four chemical insecticide groups were cited in the study sites: organochlorines, organophosphates, carbamates and pyrethroids. These chemicals were used for personal, crop or wood protection. In the four An. gambiae populations tested, significant variation in resistance levels, molecular forms composition and kdr frequencies were recorded in the time span of the study. Increases in DDT and pyrethroid resistance, as observed in most areas, were generally associated with an increase in the relative frequency of the S molecular form carrying the kdr mutations at higher frequencies. In Mangoum, however, where only the S form was present, a significant increase in the frequency of kdr alleles between 2003 to 2007 diverged with a decrease of the level of resistance to DDT and pyrethroids. Analyses of the kdr frequencies in dead and surviving mosquitoes showed partial correlation between the kdr genotypes and resistance phenotypes, suggesting that the kdr mechanism may act with certain cofactors to be identified. Conclusion: These results demonstrate the ongoing spread of kdr alleles in An. gambiae in Central Africa. The rapid evolution of insecticide resistance in this highly dynamic and genetically polymorphic species remains a challenge for its control

    Stratification and Adaptation of Malaria Control Interventions in Chad

    No full text
    Malaria remains the leading cause of morbidity and mortality in Chad. The World Health Organization (WHO) has recommended that endemic countries stratify malaria to guide interventions. Thus, the Republic of Chad has initiated a stratification process based on malaria incidence with the aim of defining transmission risk and proposing interventions. We collected routine malaria data from health facilities from 2017–2021, the national survey on malaria indicators, the entomological data of NMCP operational research, the demographic and health surveys, and remote sensing of environmental data. Stratification was based on the adjusted incidence of malaria to guide interventions. The adjusted incidence of malaria was, on average, 374 cases per 1000 people in the country. However, it varied according to health districts. Health districts were stratified into very low malaria incidence (n = 25), low malaria incidence (n = 20), moderate malaria incidence (n = 46) and high malaria incidence (n = 38). Micro-stratification in health districts with very low incidence was carried out to identify districts with incidence <10 cases per 1000 person with a view to a malaria pre-elimination programme. Appropriate malaria control interventions were proposed based on the strata identified. Stratification enables the country to target interventions to accelerate the reduction of the burden caused by malaria with a pre-elimination goal

    Stratification and Adaptation of Malaria Control Interventions in Chad

    No full text
    International audienceMalaria remains the leading cause of morbidity and mortality in Chad. The World Health Organization (WHO) has recommended that endemic countries stratify malaria to guide interventions. Thus, the Republic of Chad has initiated a stratification process based on malaria incidence with the aim of defining transmission risk and proposing interventions. We collected routine malaria data from health facilities from 2017-2021, the national survey on malaria indicators, the entomological data of NMCP operational research, the demographic and health surveys, and remote sensing of environmental data. Stratification was based on the adjusted incidence of malaria to guide interventions. The adjusted incidence of malaria was, on average, 374 cases per 1000 people in the country. However, it varied according to health districts. Health districts were stratified into very low malaria incidence (n = 25), low malaria incidence (n = 20), moderate malaria incidence (n = 46) and high malaria incidence (n = 38). Micro-stratification in health districts with very low incidence was carried out to identify districts with incidence <10 cases per 1000 person with a view to a malaria pre-elimination programme. Appropriate malaria control interventions were proposed based on the strata identified. Stratification enables the country to target interventions to accelerate the reduction of the burden caused by malaria with a pre-elimination goal
    corecore