1,966 research outputs found

    Representing Structural Information of Helical Charge Distributions in Cylindrical Coordinates

    Full text link
    Structural information in the local electric field produced by helical charge distributions, such as dissolved DNA, is revealed in a straightforward manner employing cylindrical coordinates. Comparison of structure factors derived in terms of cylindrical and helical coordinates is made. A simple coordinate transformation serves to relate the Green function in cylindrical and helical coordinates. We also compare the electric field on the central axis of a single helix as calculated in both systems.Comment: 11 pages in plain LaTex, no figures. Accepted for publication in PRE March, 199

    SLOCC determinant invariants of order 2^{n/2} for even n qubits

    Full text link
    In this paper, we study SLOCC determinant invariants of order 2^{n/2} for any even n qubits which satisfy the SLOCC determinant equations. The determinant invariants can be constructed by a simple method and the set of all these determinant invariants is complete with respect to permutations of qubits. SLOCC entanglement classification can be achieved via the vanishing or not of the determinant invariants. We exemplify the method for several even number of qubits, with an emphasis on six qubits.Comment: J. Phys. A: Math. Theor. 45 (2012) 07530

    Flavor Symmetry for Quarks and Leptons

    Get PDF
    Present data on neutrino masses and mixing favor the highly symmetric tribimaximal neutrino mixing matrix which suggests an underlying flavor symmetry. A systematic study of non-abelian finite groups of order g31g \leq 31 reveals that tribimaximal mixing can be derived not only from the well known tetrahedral flavor symmetry TA4T \equiv A_4, but also by using the binary tetrahedral symmetry TSL2(F3)T^{'} \equiv SL_2(F_3) which does not contain the tetrahedral group as a subgroup. TT^{'} has the further advantage that it can also neatly accommodate the quark masses including a heavy top quark.Comment: 12 pages latex. More typos correcte

    New invariants for entangled states

    Get PDF
    We propose new algebraic invariants that distinguish and classify entangled states. Considering qubits as well as higher spin systems, we obtained complete entanglement classifications for cases that were either unsolved or only conjectured in the literature.Comment: published versio

    Modelling and analyzing adaptive self-assembling strategies with Maude

    Get PDF
    Building adaptive systems with predictable emergent behavior is a challenging task and it is becoming a critical need. The research community has accepted the challenge by introducing approaches of various nature: from software architectures, to programming paradigms, to analysis techniques. We recently proposed a conceptual framework for adaptation centered around the role of control data. In this paper we show that it can be naturally realized in a reflective logical language like Maude by using the Reflective Russian Dolls model. Moreover, we exploit this model to specify and analyse a prominent example of adaptive system: robot swarms equipped with obstacle-avoidance self-assembly strategies. The analysis exploits the statistical model checker PVesta

    Spacetime Emergence and General Covariance Transmutation

    Get PDF
    Spacetime emergence refers to the notion that classical spacetime "emerges" as an approximate macroscopic entity from a non-spatio-temporal structure present in a more complete theory of interacting fundamental constituents. In this article, we propose a novel mechanism involving the "soldering" of internal and external spaces for the emergence of spacetime and the twin transmutation of general covariance. In the context of string theory, this mechanism points to a critical four dimensional spacetime background.Comment: 11 pages, v2: version to appear in MPL

    Possible manifestation of heavy stable colored particles in cosmology and cosmic rays

    Get PDF
    We discuss the cosmological implications as well as possible observability of massive, stable, colored particles which often appear in the discussion of physics beyond the standard model. We argue that if their masses are more than a few hundred GeV and if they saturate the halo density and/or occur with closure density of the universe, they are ruled out by the present WIMP search experiments as well as the searches for anomalous heavy isotopes of ordinary nuclei. We then comment on the possibility that these particles as well as the monopoles could be responsible for the ultra high energy cosmic rays with energy 1020\geq 10^{20} eV and point out that their low inelasticity argues against this.Comment: 9 pages; UMD-PP-98-1

    Embryonic Signaling Pathways and Rhabdomyosarcoma: Contributions to Cancer Development and Opportunities for Therapeutic Targeting

    Get PDF
    Rhabdomyosarcoma is the most common soft tissue sarcoma of childhood and adolescence, accounting for approximately 7% of childhood cancers. Current therapies include nonspecific cytotoxic chemotherapy regimens, radiation therapy, and surgery; however, these multimodality strategies are unsuccessful in the majority of patients with high-risk disease. It is generally believed that these tumors represent arrested or aberrant skeletal muscle development, and, accordingly, developmental signaling pathways critical to myogenesis such as Notch, WNT, and Hedgehog may represent new therapeutic targets. In this paper, we summarize the current preclinical studies linking these embryonic pathways to rhabdomyosarcoma tumorigenesis and provide support for the investigation of targeted therapies in this embryonic cancer

    Semantic-based policy engineering for autonomic systems

    No full text
    This paper presents some important directions in the use of ontology-based semantics in achieving the vision of Autonomic Communications. We examine the requirements of Autonomic Communication with a focus on the demanding needs of ubiquitous computing environments, with an emphasis on the requirements shared with Autonomic Computing. We observe that ontologies provide a strong mechanism for addressing the heterogeneity in user task requirements, managed resources, services and context. We then present two complimentary approaches that exploit ontology-based knowledge in support of autonomic communications: service-oriented models for policy engineering and dynamic semantic queries using content-based networks. The paper concludes with a discussion of the major research challenges such approaches raise

    Adapting Quality Assurance to Adaptive Systems: The Scenario Coevolution Paradigm

    Full text link
    From formal and practical analysis, we identify new challenges that self-adaptive systems pose to the process of quality assurance. When tackling these, the effort spent on various tasks in the process of software engineering is naturally re-distributed. We claim that all steps related to testing need to become self-adaptive to match the capabilities of the self-adaptive system-under-test. Otherwise, the adaptive system's behavior might elude traditional variants of quality assurance. We thus propose the paradigm of scenario coevolution, which describes a pool of test cases and other constraints on system behavior that evolves in parallel to the (in part autonomous) development of behavior in the system-under-test. Scenario coevolution offers a simple structure for the organization of adaptive testing that allows for both human-controlled and autonomous intervention, supporting software engineering for adaptive systems on a procedural as well as technical level.Comment: 17 pages, published at ISOLA 201
    corecore