859 research outputs found

    Broadband sensitization of 1.53 mu m Er3+ luminescence in erbium-implanted alumina

    Get PDF
    Experimental evidence of an efficient broadband sensitization mechanism in erbium-implanted alumina is presented. Alumina thin films were deposited by plasma-enhanced chemical vapor deposition using trimethyl-amine alane and nitrous oxide. The as-grown films, together with sapphire crystals, were implanted with erbium. Photoluminescence excitation spectra showed that erbium-implanted sapphire crystals exhibit characteristic Er3+ luminescence at 1.53 mum only when pumped resonantly. In contrast, erbium-implanted alumina thin films exhibit 1.53 mum luminescence even when pumped at wavelengths outside Er3+ absorption bands. We postulate that the sensitizing species is either small nanoclusters of aluminum or pairs of aluminum ions. (C) 2004 American Institute of Physics

    Luminescence from erbium-doped silicon nanocrystals in silica: Excitation mechanisms

    Get PDF
    We develop a model for the excitation of erbium ions in erbium-doped silicon nanocrystals via coupling from confined excitons generated within the silicon nanoclusters. The model provides a phenomenological picture of the exchange mechanism and allows us to evaluate an effective absorption cross section for erbium of up to 7.3x10(-17) cm(2): four orders of magnitude higher than in stoichiometric silica. We address the origin of the 1.6 eV emission band associated with the silicon nanoclusters and determine absorption cross sections and excitonic lifetimes for nanoclusters in silica which are of the order of 1.02x10(-16) cm(2) and 20-100 mus, respectively. (C) 2002 American Institute of Physics

    Probing the close environment of young stellar objects with interferometry

    Full text link
    The study of Young Stellar Objects (YSOs) is one of the most exciting topics that can be undertaken by long baseline optical interferometry. The magnitudes of these objects are at the edge of capabilities of current optical interferometers, limiting the studies to a few dozen, but are well within the capability of coming large aperture interferometers like the VLT Interferometer, the Keck Interferometer, the Large Binocular Telescope or 'OHANA. The milli-arcsecond spatial resolution reached by interferometry probes the very close environment of young stars, down to a tenth of an astronomical unit. In this paper, I review the different aspects of star formation that can be tackled by interferometry: circumstellar disks, multiplicity, jets. I present recent observations performed with operational infrared interferometers, IOTA, PTI and ISI, and I show why in the next future one will extend these studies with large aperture interferometers.Comment: Review to be published in JENAM'2002 proceedings "The Very Large Telescope Interferometer Challenges for the future

    The host metabolite D-serine contributes to bacterial niche specificity through gene selection

    Get PDF
    Escherichia coli comprise a diverse array of both commensals and niche-specific pathotypes. The ability to cause disease results from both carriage of specific virulence factors and regulatory control of these via environmental stimuli. Moreover, host metabolites further refine the response of bacteria to their environment and can dramatically affect the outcome of the host–pathogen interaction. Here, we demonstrate that the host metabolite, D-serine, selectively affects gene expression in E. coli O157:H7. Transcriptomic profiling showed exposure to D-serine results in activation of the SOS response and suppresses expression of the Type 3 Secretion System (T3SS) used to attach to host cells. We also show that concurrent carriage of both the D-serine tolerance locus (dsdCXA) and the locus of enterocyte effacement pathogenicity island encoding a T3SS is extremely rare, a genotype that we attribute to an ‘evolutionary incompatibility’ between the two loci. This study demonstrates the importance of co-operation between both core and pathogenic genetic elements in defining niche specificity

    Daf-2 Signaling Modifies Mutant SOD1 Toxicity in C. elegans

    Get PDF
    The DAF-2 Insulin/IGF-1 signaling (IIS) pathway is a strong modifier of Caenorhabditis elegans longevity and healthspan. As aging is the greatest risk factor for developing neurodegenerative diseases such as Amyotrophic Lateral Sclerosis (ALS), we were interested in determining if DAF-2 signaling modifies disease pathology in mutant superoxide dismutase 1 (SOD1) expressing C. elegans. Worms with pan-neuronal G85R SOD1 expression demonstrate significantly impaired locomotion as compared to WT SOD1 expressing controls and they develop insoluble SOD1 aggregates. Reductions in DAF-2 signaling, either through a hypomorphic allele or neuronally targeted RNAi, decreases the abundance of aggregated SOD1 and results in improved locomotion in a DAF-16 dependant manner. These results suggest that manipulation of the DAF-2 Insulin/IGF-1 signaling pathway may have therapeutic potential for the treatment of ALS

    Circumstellar discs: What will be next?

    Full text link
    This prospective chapter gives our view on the evolution of the study of circumstellar discs within the next 20 years from both observational and theoretical sides. We first present the expected improvements in our knowledge of protoplanetary discs as for their masses, sizes, chemistry, the presence of planets as well as the evolutionary processes shaping these discs. We then explore the older debris disc stage and explain what will be learnt concerning their birth, the intrinsic links between these discs and planets, the hot dust and the gas detected around main sequence stars as well as discs around white dwarfs.Comment: invited review; comments welcome (32 pages

    The maintenance gap: a new theoretical perspective on the evolution of aging

    Get PDF
    One of the prevailing theories of aging, the disposable soma theory, views aging as the result of the accumulation of damage through imperfect maintenance. Aging, then, is explained from an evolutionary perspective by asserting that this lack of maintenance exists because the required resources are better invested in reproduction. However, the amount of maintenance necessary to prevent aging, ‘maintenance requirement’ has so far been largely neglected and has certainly not been considered from an evolutionary perspective. To our knowledge we are the first to do so, and arrive at the conclusion that all maintenance requirement needs an evolutionary explanation. Increases in maintenance requirement can only be selected for if these are linked with either higher fecundity or better capabilities to cope with environmental challenges to the integrity of the organism. Several observations are suggestive of the latter kind of trade-off, the existence of which leads to the inevitable conclusion that the level of maintenance requirement is in principle unbound. Even the allocation of all available resources to maintenance could be unable to stop aging in some organisms. This has major implications for our understanding of the aging process on both the evolutionary and the mechanistic level. It means that the expected effect of measures to reallocate resources to maintenance from reproduction may be small in some species. We need to have an idea of how much maintenance is necessary in the first place. Our explorations of how natural selection is expected to act on the maintenance requirement provides the first step in understanding this

    Genes down-regulated in spaceflight are involved in the control of longevity in Caenorhabditis elegans

    Get PDF
    How microgravitational space environments affect aging is not well understood. We observed that, in Caenorhabditis elegans, spaceflight suppressed the formation of transgenically expressed polyglutamine aggregates, which normally accumulate with increasing age. Moreover, the inactivation of each of seven genes that were down-regulated in space extended lifespan on the ground. These genes encode proteins that are likely related to neuronal or endocrine signaling: acetylcholine receptor, acetylcholine transporter, choline acetyltransferase, rhodopsin-like receptor, glutamate-gated chloride channel, shaker family of potassium channel, and insulin-like peptide. Most of them mediated lifespan control through the key longevity-regulating transcription factors DAF-16 or SKN-1 or through dietary-restriction signaling, singly or in combination. These results suggest that aging in C. elegans is slowed through neuronal and endocrine response to space environmental cues

    Circumstellar disks and planets. Science cases for next-generation optical/infrared long-baseline interferometers

    Full text link
    We present a review of the interplay between the evolution of circumstellar disks and the formation of planets, both from the perspective of theoretical models and dedicated observations. Based on this, we identify and discuss fundamental questions concerning the formation and evolution of circumstellar disks and planets which can be addressed in the near future with optical and infrared long-baseline interferometers. Furthermore, the importance of complementary observations with long-baseline (sub)millimeter interferometers and high-sensitivity infrared observatories is outlined.Comment: 83 pages; Accepted for publication in "Astronomy and Astrophysics Review"; The final publication is available at http://www.springerlink.co
    corecore