44 research outputs found

    A scale-down mimic for mapping the process performance of centrifugation, depth and sterile filtration

    Get PDF
    In the production of biopharmaceuticals disk-stack centrifugation is widely used as a harvest step for the removal of cells and cellular debris. Depth filters followed by sterile filters are often then employed to remove residual solids remaining in the centrate. Process development of centrifugation is usually conducted at pilot-scale so as to mimic the commercial scale equipment but this method requires large quantities of cell culture and significant levels of effort for successful characterization. A scale-down approach based upon the use of a shear device and a bench-top centrifuge has been extended in this work towards a preparative methodology that successfully predicts the performance of the continuous centrifuge and polishing filters. The use of this methodology allows the effects of cell culture conditions and large-scale centrifugal process parameters on subsequent filtration performance to be assessed at an early stage of process development where material availability is limited

    The Cylindrical Indefinite Positive Column in a Fixed Neutral Gas

    No full text

    Measurements of Resonance Imprisonment in D 1

    No full text

    A scale‐down mimic for mapping the process performance of centrifugation, depth and sterile filtration

    No full text
    In the production of biopharmaceuticals disk-stack centrifugation is widely used as a harvest step for the removal of cells and cellular debris. Depth filters followed by sterile filters are often then employed to remove residual solids remaining in the centrate. Process development of centrifugation is usually conducted at pilot-scale so as to mimic the commercial scale equipment but this method requires large quantities of cell culture and significant levels of effort for successful characterization. A scale-down approach based upon the use of a shear device and a bench-top centrifuge has been extended in this work towards a preparative methodology that successfully predicts the performance of the continuous centrifuge and polishing filters. The use of this methodology allows the effects of cell culture conditions and large-scale centrifugal process parameters on subsequent filtration performance to be assessed at an early stage of process development where material availability is limited

    Targeted regulation of self-peptide presentation prevents type I diabetes in mice without disrupting general immunocompetence

    No full text
    Peptide loading of MHC class II (MHCII) molecules is directly catalyzed by the MHCII-like molecule HLA-DM (DM). Another MHCII-like molecule, HLA-DO (DO), associates with DM, thereby modulating DM function. The biological role of DO-mediated regulation of DM activity in vivo remains unknown; however, it has been postulated that DO expression dampens presentation of self antigens, thereby preventing inappropriate T cell activation that ultimately leads to autoimmunity. To test the idea that DO modulation of the MHCII self-peptide repertoire mediates self tolerance, we generated NOD mice that constitutively overexpressed DO in DCs (referred to herein as NOD.DO mice). NOD mice are a mouse model for type 1 diabetes, an autoimmune disease mediated by the destruction of insulin-secreting pancreatic β cells. Our studies showed that diabetes development was completely blocked in NOD.DO mice. Similar to NOD mice, NOD.DO animals selected a diabetogenic T cell repertoire, and the numbers and function of Tregs were normal. Indeed, immune system function in NOD.DO mice was equivalent to that in NOD mice. NOD.DO DCs, however, presented an altered MHCII-bound self-peptide repertoire, thereby preventing the activation of diabetogenic T cells and subsequent diabetes development. These studies show that DO expression can shape the overall MHCII self-peptide repertoire to promote T cell tolerance

    An Apparatus for Membrane-confined Analytical Electrophoresis

    No full text
    A membrane‐confined analytical electrophoresis apparatus for measuring the solution charge of macromolecules has been described previously (T. M. Laue et al., Anal. Biochem. 1989, 182, 377–382). Presented here is a design for this apparatus, which permits the on‐line acquisition and display of absorbance data from up to 512 positions along an analysis chamber. Concentration distributions of macromolecules in solution can be monitored in the chamber to provide steady‐state electrophoresis, electrophoretic mobility and diffusion measurements. Buffer chambers press semipermeable membranes against the open ends of a fused‐silica cuvette to form the analysis chamber. This configuration permits both the flow of buffer and the establishment of an electric field across the cuvette, while retaining macromolecules in the field of view. Though a gel may be included in the analysis chamber, none is required for gradient stabilization. The volume of sample required for analysis is 8 μL, most of which is recoverable. Experimental conditions can be varied during study by simply changing the circulating buffer and/or the electric field. The analysis and buffer chambers are held in an aluminum housing that sits in an aluminum water jacket. The water jacket provides temperature control, shielding from external electrical noise and also serves as an optical mask. Plans for the cell assembly, optical system and the computer interface for data acquisition are provided. The assembly and operation of the apparatus and the analysis of data are described
    corecore