348 research outputs found
Oxygen Tension Modulates Neurite Outgrowth in PC12 Cells Through A Mechanism Involving HIF and VEGF
Cell-based approaches are a promising therapeutic strategy for treating injuries to the nervous system, but the optimal means to promote neurite extension and direct cellular behavior are unclear. Previous studies have examined the behavior of neural-like cells in ambient air (21% oxygen tension), yet these conditions are not representative of the physiological oxygen microenvironment of neural tissues. We hypothesized that neuronal differentiation of a model neural cell line (PC12) could be controlled by modulating local oxygen tension. Compared to ambient conditions, PC12 cells cultured in reduced oxygen exhibited significant increases in neurite extension and total neurite length, with 4% oxygen yielding the highest levels of both indicators. We confirmed neurite extension was mediated through oxygen-responsive mechanisms using small molecules that promote or inhibit HIF-1α stabilization. The hypoxic target gene Vegf was implicated as a neurotrophic factor, as neurite formation at 21% oxygen was mimicked with exogenous VEGF, and a VEGF-neutralizing antibody attenuated neurite formation under reduced oxygen conditions. These findings demonstrate that behavior of neural-like cells is driven by the oxygen microenvironment via VEGF function, and suggest promising approaches for future applications in neural repair
Insecticide resistance and the future of malaria control in Zambia.
BACKGROUND: In line with the Global trend to improve malaria control efforts a major campaign of insecticide treated net distribution was initiated in 1999 and indoor residual spraying with DDT or pyrethroids was reintroduced in 2000 in Zambia. In 2006, these efforts were strengthened by the President's Malaria Initiative. This manuscript reports on the monitoring and evaluation of these activities and the potential impact of emerging insecticide resistance on disease transmission. METHODS: Mosquitoes were captured daily through a series of 108 window exit traps located at 18 sentinel sites. Specimens were identified to species and analyzed for sporozoites. Adult Anopheles mosquitoes were collected resting indoors and larva collected in breeding sites were reared to F1 and F0 generations in the lab and tested for insecticide resistance following the standard WHO susceptibility assay protocol. Annual cross sectional household parasite surveys were carried out to monitor the impact of the control programme on prevalence of Plasmodium falciparum in children aged 1 to 14 years. RESULTS: A total of 619 Anopheles gambiae s.l. and 228 Anopheles funestus s.l. were captured from window exit traps throughout the period, of which 203 were An. gambiae malaria vectors and 14 An. funestus s.s.. In 2010 resistance to DDT and the pyrethroids deltamethrin, lambda-cyhalothrin and permethrin was detected in both An. gambiae s.s. and An. funestus s.s.. No sporozoites were detected in either species. Prevalence of P. falciparum in the sentinel sites remained below 10% throughout the study period. CONCLUSION: Both An. gambiae s.s. and An. funestus s.s. were controlled effectively with the ITN and IRS programme in Zambia, maintaining a reduced disease transmission and burden. However, the discovery of DDT and pyrethroid resistance in the country threatens the sustainability of the vector control programme
Therapeutic DNA vaccine induces broad T cell responses in the gut and sustained protection from viral rebound and AIDS in SIV-infected rhesus macaques.
Immunotherapies that induce durable immune control of chronic HIV infection may eliminate the need for life-long dependence on drugs. We investigated a DNA vaccine formulated with a novel genetic adjuvant that stimulates immune responses in the blood and gut for the ability to improve therapy in rhesus macaques chronically infected with SIV. Using the SIV-macaque model for AIDS, we show that epidermal co-delivery of plasmids expressing SIV Gag, RT, Nef and Env, and the mucosal adjuvant, heat-labile E. coli enterotoxin (LT), during antiretroviral therapy (ART) induced a substantial 2-4-log fold reduction in mean virus burden in both the gut and blood when compared to unvaccinated controls and provided durable protection from viral rebound and disease progression after the drug was discontinued. This effect was associated with significant increases in IFN-γ T cell responses in both the blood and gut and SIV-specific CD8+ T cells with dual TNF-α and cytolytic effector functions in the blood. Importantly, a broader specificity in the T cell response seen in the gut, but not the blood, significantly correlated with a reduction in virus production in mucosal tissues and a lower virus burden in plasma. We conclude that immunizing with vaccines that induce immune responses in mucosal gut tissue could reduce residual viral reservoirs during drug therapy and improve long-term treatment of HIV infection in humans
Next generation sequencing has lower sequence coverage and poorer SNP-detection capability in the regulatory regions
The rapid development of next generation sequencing (NGS) technology provides a new chance to extend the scale and resolution of genomic research. How to efficiently map millions of short reads to the reference genome and how to make accurate SNP calls are two major challenges in taking full advantage of NGS. In this article, we reviewed the current software tools for mapping and SNP calling, and evaluated their performance on samples from The Cancer Genome Atlas (TCGA) project. We found that BWA and Bowtie are better than the other alignment tools in comprehensive performance for Illumina platform, while NovoalignCS showed the best overall performance for SOLiD. Furthermore, we showed that next-generation sequencing platform has significantly lower coverage and poorer SNP-calling performance in the CpG islands, promoter and 5′-UTR regions of the genome. NGS experiments targeting for these regions should have higher sequencing depth than the normal genomic region
Dyadic adjustment, family coping, body image, quality of life and psychological morbidity in patients with psoriasis and their partners
Background Psoriasis is an incurable and chronic disease
that includes unpredictable periods of remission and relapse
requiring long-term therapy.
Purpose This paper focuses on the relationship among
family coping, psychological morbidity, body image,
dyadic adjustment and quality of life in psoriatic patients
and their partners.
Method One hundred and one patients with psoriasis and
78 partners comprised the sample. They were regular users
of the Dermatology Service of a Central Northern hospital
in Portugal and a private dermatology clinic. Patients with
psoriasis were assessed on anxiety, depression, body image,
quality of life, dyadic adjustment and family coping.
Partners were assessed on the same measures except body
image and quality of life.
Results A positive relationship among dyadic adjustment,
psychological morbidity and family coping in patients and
their partners was found. Also, patients with lower levels of
quality of life had partners with higher levels of depressive
and anxious symptoms. Better dyadic adjustment predicted
family coping in the psoriatic patient. High levels of dyadic
adjustment in patients and low partners’ trait anxiety
predicted better dyadic adjustment in partners.
Conclusion The results highlight the importance of incorporating
family variables in psychological interventions in
psoriasis’ care, particularly family coping and dyadic
adjustment as well as the need for psychological intervention
to focus both on patients and partners
DNA Ligase C and Prim-PolC participate in base excision repair in mycobacteria
Prokaryotic Ligase D is a conserved DNA repair apparatus processing DNA double-strand breaks in stationary phase. An orthologous Ligase C (LigC) complex also co-exists in many bacterial species but its function is unknown. Here, we show that the LigC complex interacts with core BER enzymes in vivo and demonstrate that together these factors constitute an excision repair apparatus capable of repairing damaged bases and abasic sites. The polymerase component, which contains a conserved C-terminal structural loop, preferentially binds to and fills-in short gapped DNA intermediates with RNA and LigC ligates the resulting nicks to complete repair. Components of the LigC complex, like LigD, are expressed upon entry into stationary phase and cells lacking either of these pathways exhibit increased sensitivity to oxidising genotoxins. Together, these findings establish that the LigC complex is directly involved in an excision repair pathway(s) that repairs DNA damage with ribonucleotides during stationary phase
Comparative genomic analysis of the arthropod muscle myosin heavy chain genes allows ancestral gene reconstruction and reveals a new type of 'partially' processed pseudogene
<p>Abstract</p> <p>Background</p> <p>Alternative splicing of mutually exclusive exons is an important mechanism for increasing protein diversity in eukaryotes. The insect <it>Mhc </it>(myosin heavy chain) gene produces all different muscle myosins as a result of alternative splicing in contrast to most other organisms of the Metazoa lineage, that have a family of muscle genes with each gene coding for a protein specialized for a functional niche.</p> <p>Results</p> <p>The muscle myosin heavy chain genes of 22 species of the Arthropoda ranging from the waterflea to wasp and <it>Drosophila </it>have been annotated. The analysis of the gene structures allowed the reconstruction of an ancient muscle myosin heavy chain gene and showed that during evolution of the arthropods introns have mainly been lost in these genes although intron gain might have happened in a few cases. Surprisingly, the genome of <it>Aedes aegypti </it>contains another and that of <it>Culex pipiens quinquefasciatus </it>two further muscle myosin heavy chain genes, called <it>Mhc3 </it>and <it>Mhc4</it>, that contain only one variant of the corresponding alternative exons of the <it>Mhc1 </it>gene. <it>Mhc3 </it>transcription in <it>Aedes aegypti </it>is documented by EST data. <it>Mhc3 </it>and <it>Mhc4 </it>inserted in the <it>Aedes </it>and <it>Culex </it>genomes either by gene duplication followed by the loss of all but one variant of the alternative exons, or by incorporation of a transcript of which all other variants have been spliced out retaining the exon-intron structure. The second and more likely possibility represents a new type of a 'partially' processed pseudogene.</p> <p>Conclusion</p> <p>Based on the comparative genomic analysis of the alternatively spliced arthropod muscle myosin heavy chain genes we propose that the splicing process operates sequentially on the transcript. The process consists of the splicing of the mutually exclusive exons until one exon out of the cluster remains while retaining surrounding intronic sequence. In a second step splicing of introns takes place. A related mechanism could be responsible for the splicing of other genes containing mutually exclusive exons.</p
Fox-1 family of RNA-binding proteins
The Fox-1 family of RNA-binding proteins are evolutionarily conserved regulators of tissue-specific alternative splicing in metazoans. The Fox-1 family specifically recognizes the (U)GCAUG stretch in regulated exons or in flanking introns, and either promotes or represses target exons. Recent unbiased bioinformatics analyses of alternatively spliced exons and comparison of various vertebrate genomes identified the (U)GCAUG stretch as a highly conserved and widely distributed element enriched in intronic regions surrounding exons with altered inclusion in muscle, heart, and brain, consistent with specific expression of Fox-1 and Fox-2 in these tissues. Global identification of Fox-2 target RNAs in living cells revealed that many of the Fox-2 target genes themselves encode splicing regulators. Further systematic elucidation of target genes of the Fox-1 family and other splicing regulators in various tissues will lead to a comprehensive understanding of splicing regulatory networks
- …