326 research outputs found

    Analysis of phosphatases in ER-negative breast cancers identifies DUSP4 as a critical regulator of growth and invasion.

    Get PDF
    Estrogen receptor (ER)-negative cancers have a poor prognosis, and few targeted therapies are available for their treatment. Our previous analyses have identified potential kinase targets critical for the growth of ER-negative, progesterone receptor (PR)-negative and HER2-negative, or "triple-negative" breast cancer (TNBC). Because phosphatases regulate the function of kinase signaling pathways, in this study, we investigated whether phosphatases are also differentially expressed in ER-negative compared to those in ER-positive breast cancers. We compared RNA expression in 98 human breast cancers (56 ER-positive and 42 ER-negative) to identify phosphatases differentially expressed in ER-negative compared to those in ER-positive breast cancers. We then examined the effects of one selected phosphatase, dual specificity phosphatase 4 (DUSP4), on proliferation, cell growth, migration and invasion, and on signaling pathways using protein microarray analyses of 172 proteins, including phosphoproteins. We identified 48 phosphatase genes are significantly differentially expressed in ER-negative compared to those in ER-positive breast tumors. We discovered that 31 phosphatases were more highly expressed, while 11 were underexpressed specifically in ER-negative breast cancers. The DUSP4 gene is underexpressed in ER-negative breast cancer and is deleted in approximately 50 % of breast cancers. Induced DUSP4 expression suppresses both in vitro and in vivo growths of breast cancer cells. Our studies show that induced DUSP4 expression blocks the cell cycle at the G1/S checkpoint; inhibits ERK1/2, p38, JNK1, RB, and NFkB p65 phosphorylation; and inhibits invasiveness of TNBC cells. These results suggest that that DUSP4 is a critical regulator of the growth and invasion of triple-negative breast cancer cells

    β1 integrin mediates an alternative survival pathway in breast cancer cells resistant to lapatinib

    Get PDF
    Abstract Introduction The overexpression of human epidermal growth factor receptor (HER)-2 in 20% of human breast cancers and its association with aggressive growth has led to widespread use of HER2-targeted therapies, such as trastuzumab (T) and lapatinib (L). Despite the success of these drugs, their efficacy is limited in patients whose tumors demonstrate de novo or acquired resistance to treatment. The β1 integrin resides on the membrane of the breast cancer cell, activating several elements of breast tumor progression including proliferation and survival. Methods We developed a panel of HER2-overexpressing cell lines resistant to L, T, and the potent LT combination through long-term exposure and validated these models in 3D culture. Parental and L/T/LT-resistant cells were subject to HER2 and β1 integrin inhibitors in 3D and monitored for 12 days, followed by quantification of colony number. Parallel experiments were conducted where cells were either stained for Ki-67 and Terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) or harvested for protein and analyzed by immunoblot. Results were subjected to statistical testing using analysis of variance and linear contrasts, followed by adjustment with the Sidak method. Results Using multiple cell lines including BT474 and HCC1954, we reveal that in L and LT resistance, where phosphorylation of EGFR/HER1, HER2, and HER3 are strongly inhibited, kinases downstream of β1 integrin--including focal adhesion kinase (FAK) and Src--are up-regulated. Blockade of β1 by the antibody AIIB2 abrogates this up-regulation and functionally achieves significant growth inhibition of L and LT resistant cells in 3D, without dramatically affecting the parental cells. SiRNA against β1 as well as pharmacologic inhibition of FAK achieve the same growth inhibitory effect. In contrast, trastuzumab-resistant cells, which retain high levels of phosphorylated EGFR/HER1, HER2, and HER3, are only modestly growth-inhibited by AIIB2. Conclusions Our data suggest that HER2 activity, which is suppressed in resistance involving L but not T alone, dictates whether β1 mediates an alternative pathway driving resistance. Our findings justify clinical studies investigating the inhibition of β1 or its downstream signaling moieties as strategies to overcome acquired L and LT resistance

    First-Line Trastuzumab Plus an Aromatase Inhibitor, With or Without Pertuzumab, in Human Epidermal Growth Factor Receptor 2-Positive and Hormone Receptor-Positive Metastatic or Locally Advanced Breast Cancer (PERTAIN): A Randomized, Open-Label Phase II Trial

    Get PDF
    To assess pertuzumab plus trastuzumab and an aromatase inhibitor (AI) in patients with human epidermal growth factor receptor 2 (HER2)-positive and hormone receptor-positive metastatic/locally advanced breast cancer (MBC/LABC)

    Disruption of estrogen receptor DNA-binding domain and related intramolecular communication restores tamoxifen sensitivity in resistant breast cancer

    Get PDF
    SummaryA serious obstacle to successful treatment of estrogen receptor (ER)-positive human breast cancer is cell resistance to tamoxifen (TAM) therapy. Here we show that the electrophile disulfide benzamide (DIBA), an ER zinc finger inhibitor, blocks ligand-dependent and -independent cell growth of TAM-resistant breast cancer in vitro and in vivo. Such inhibition depends on targeting disruption of the ER DNA-binding domain and its communication with neighboring functional domains, facilitating ERα dissociation from its coactivator AIB1 and concomitant association with its corepressor NCoR bound to chromatin. DIBA does not affect phosphorylation of HER2, MAPK, AKT, and AIB1, suggesting that DIBA-modified ERα may induce a switch from agonistic to antagonistic effects of TAM on resistant breast cancer cells

    Effects of n-3 fatty acids, EPA v. DHA, on depressive symptoms, quality of life, memory and executive function in older adults with mild cognitive impairment: a 6-month randomised controlled trial

    Full text link
    First published online 20 September 2011Depressive symptoms may increase the risk of progressing from mild cognitive impairment (MCI) to dementia. Consumption of n-3 PUFA may alleviate both cognitive decline and depression. The aim of the present study was to investigate the benefits of supplementing a diet with n-3 PUFA, DHA and EPA, for depressive symptoms, quality of life (QOL) and cognition in elderly people with MCI. We conducted a 6-month double-blind, randomised controlled trial. A total of fifty people aged >65 years with MCI were allocated to receive a supplement rich in EPA (1·67 g EPA + 0·16 g DHA/d; n 17), DHA (1·55 g DHA + 0·40 g EPA/d; n 18) or the n-6 PUFA linoleic acid (LA; 2·2 g/d; n 15). Treatment allocation was by minimisation based on age, sex and depressive symptoms (Geriatric Depression Scale, GDS). Physiological and cognitive assessments, questionnaires and fatty acid composition of erythrocytes were obtained at baseline and 6 months (completers: n 40; EPA n 13, DHA n 16, LA n 11). Compared with the LA group, GDS scores improved in the EPA (P=0·04) and DHA (P=0·01) groups and verbal fluency (Initial Letter Fluency) in the DHA group (P=0·04). Improved GDS scores were correlated with increased DHA plus EPA (r 0·39, P=0·02). Improved self-reported physical health was associated with increased DHA. There were no treatment effects on other cognitive or QOL parameters. Increased intakes of DHA and EPA benefited mental health in older people with MCI. Increasing n-3 PUFA intakes may reduce depressive symptoms and the risk of progressing to dementia. This needs to be investigated in larger, depressed samples with MCI.Natalie Sinn, Catherine M. Milte, Steven J. Street, Jonathan D. Buckley, Alison M. Coates, John Petkov, and Peter R. C. How

    Proteomic and transcriptomic profiling reveals a link between the PI3K pathway and lower estrogen-receptor (ER) levels and activity in ER+ breast cancer

    Get PDF
    IntroductionAccumulating evidence suggests that both levels and activity of the estrogen receptor (ER) and the progesterone receptor (PR) are dramatically influenced by growth-factor receptor (GFR) signaling pathways, and that this crosstalk is a major determinant of both breast cancer progression and response to therapy. The phosphatidylinositol 3-kinase (PI3K) pathway, a key mediator of GFR signaling, is one of the most altered pathways in breast cancer. We thus examined whether deregulated PI3K signaling in luminal ER+ breast tumors is associated with ER level and activity and intrinsic molecular subtype.MethodsWe defined two independent molecular signatures of the PI3K pathway: a proteomic (reverse-phase proteomic array) PI3K signature, based on protein measurement for PI3K signaling intermediates, and a PI3K transcriptional (mRNA) signature based on the set of genes either induced or repressed by PI3K inhibitors. By using these signatures, we scored each ER+ breast tumor represented in multiple independent expression-profiling datasets (four mRNA, n = 915; one protein, n = 429) for activation of the PI3K pathway. Effects of PI3K inhibitor BEZ-235 on ER expression and activity levels and cell growth were tested by quantitative real-time PCR and cell proliferation assays.ResultsWithin ER+ tumors, ER levels were negatively correlated with the PI3K activation scores, both at the proteomic and transcriptional levels, in all datasets examined. PI3K signature scores were also higher in ER+ tumors and cell lines of the more aggressive luminal B molecular subtype versus those of the less aggressive luminal A subtype. Notably, BEZ-235 treatment in four different ER+ cell lines increased expression of ER and ER target genes including PR, and treatment with IGF-I (which signals via PI3K) decreased expression of ER and target genes, thus further establishing an inverse functional relation between ER and PI3K. BEZ-235 had an additional effect on tamoxifen in inhibiting the growth of a number of ER+ cell lines.ConclusionsOur data suggest that luminal B tumors have hyperactive GFR/PI3K signaling associated with lower ER levels, which has been correlated with resistance to endocrine therapy. Targeting PI3K in these tumors might reverse loss of ER expression and signaling and restore hormonal sensitivity

    An epigenomic approach to therapy for tamoxifen-resistant breast cancer

    Get PDF
    Tamoxifen has been a frontline treatment for estrogen receptor alpha (ERα)-positive breast tumors in premenopausal women. However, resistance to tamoxifen occurs in many patients. ER still plays a critical role in the growth of breast cancer cells with acquired tamoxifen resistance, suggesting that ERα remains a valid target for treatment of tamoxifen-resistant (Tam-R) breast cancer. In an effort to identify novel regulators of ERα signaling, through a small-scale siRNA screen against histone methyl modifiers, we found WHSC1, a histone H3K36 methyltransferase, as a positive regulator of ERα signaling in breast cancer cells. We demonstrated that WHSC1 is recruited to the ERα gene by the BET protein BRD3/4, and facilitates ERα gene expression. The small-molecule BET protein inhibitor JQ1 potently suppressed the classic ERα signaling pathway and the growth of Tam-R breast cancer cells in culture. Using a Tam-R breast cancer xenograft mouse model, we demonstrated in vivo anti-breast cancer activity by JQ1 and a strong long-lasting effect of combination therapy with JQ1 and the ER degrader fulvestrant. Taken together, we provide evidence that the epigenomic proteins BRD3/4 and WHSC1 are essential regulators of estrogen receptor signaling and are novel therapeutic targets for treatment of Tam-R breast cancer
    corecore