11,798 research outputs found
Bipolar High Field Excitations in Co/Cu/Co Nanopillars
Current-induced magnetic excitations in Co/Cu/Co bilayer nanopillars
(50 nm in diameter) have been studied experimentally at low temperatures
for large applied fields perpendicular to the layers. At sufficiently high
current densities excitations, which lead to a decrease in differential
resistance, are observed for both current polarities. Such bipolar excitations
are not expected in a single domain model of spin-transfer. We propose that at
high current densities strong asymmetries in the longitudinal spin accumulation
cause spin-wave instabilities transverse to the current direction in bilayer
samples, similar to those we have reported for single magnetic layer junctions.Comment: 4 pages, 4 figures+ 2 additional jpg figures (Fig. 2d and Fig. 3)
high resolution figures and recent related articles are available at:
http://www.physics.nyu.edu/kentlab/news.htm
Satellite remote sensing facility for oceanograhic applications
The project organization, design process, and construction of a Remote Sensing Facility at Scripps Institution of Oceanography at LaJolla, California are described. The facility is capable of receiving, processing, and displaying oceanographic data received from satellites. Data are primarily imaging data representing the multispectral ocean emissions and reflectances, and are accumulated during 8 to 10 minute satellite passes over the California coast. The most important feature of the facility is the reception and processing of satellite data in real time, allowing investigators to direct ships to areas of interest for on-site verifications and experiments
Current Induced Excitations in Cu/Co/Cu Single Ferromagnetic Layer Nanopillars
Current-induced magnetic excitations in Cu/Co/Cu single layer nanopillars
(~50 nm in diameter) have been studied experimentally as a function of Co layer
thickness at low temperatures for large applied fields perpendicular to the
layers. For asymmetric junctions current induced excitations are observed at
high current densities for only one polarity of the current and are absent at
the same current densities in symmetric junctions. These observations confirm
recent predictions of spin-transfer torque induced spin wave excitations in
single layer junctions with a strong asymmetry in the spin accumulation in the
leads.Comment: 4 pages, 3 figures, submitted to Phys. Rev. Let
The 1981 NASA/ASEE Summer Faculty Fellowship Program: Research reports
Research reports related to spacecraft industry technological advances, requirements, and applications were considered. Some of the topic areas addressed were: (1) Fabrication, evaluation, and use of high performance composites and ceramics, (2) antenna designs, (3) electronics and microcomputer applications and mathematical modeling and programming techniques, (4) design, fabrication, and failure detection methods for structural materials, components, and total systems, and (5) chemical studies of bindary organic mixtures and polymer synthesis. Space environment parameters were also discussed
Probing the size of extra dimension with gravitational wave astronomy
In Randall-Sundrum II (RS-II) braneworld model, it has been conjectured
according to the AdS/CFT correspondence that brane-localized black hole (BH)
larger than the bulk AdS curvature scale cannot be static, and it is
dual to a four dimensional BH emitting the Hawking radiation through some
quantum fields. In this scenario, the number of the quantum field species is so
large that this radiation changes the orbital evolution of a BH binary. We
derived the correction to the gravitational waveform phase due to this effect
and estimated the upper bounds on by performing Fisher analyses. We
found that DECIGO/BBO can put a stronger constraint than the current table-top
result by detecting gravitational waves from small mass BH/BH and BH/neutron
star (NS) binaries. Furthermore, DECIGO/BBO is expected to detect 10 BH/NS
binaries per year. Taking this advantage, we found that DECIGO/BBO can actually
measure down to m for 5 year observation if we know that
binaries are circular a priori. This is about 40 times smaller than the upper
bound obtained from the table-top experiment. On the other hand, when we take
eccentricities into binary parameters, the detection limit weakens to m due to strong degeneracies between and eccentricities. We also
derived the upper bound on from the expected detection number of extreme
mass ratio inspirals (EMRIs) with LISA and BH/NS binaries with DECIGO/BBO,
extending the discussion made recently by McWilliams. We found that these less
robust constraints are weaker than the ones from phase differences.Comment: 19 pages, 10 figures. Published in PRD, typos corrected, references
and footnotes adde
The Mr 28,000 gap junction proteins from rat heart and liver are different but related
The sequence of the amino-terminal 32 residues of the rat heart Mr 28,000 gap junction protein presented here allows, for the first time, a sequence comparison of gap junctional proteins from different tissues (heart and liver). Comparison of the rat heart gap junction protein sequence and that available from rat liver reveals 43% sequence identity and conservative changes at an additional 25% of the positions. Both proteins exhibit a hydrophobic domain which could represent a transmembrane span of the junction. This result unequivocally demonstrates the existence of at least two forms of the gap junction protein. As yet, no homology is evident between the gap junctional proteins of either heart or liver and main intrinsic protein from rat eye lens
The 1982 NASA/ASEE Summer Faculty Fellowship Program
A NASA/ASEE Summer Faculty Fellowship Research Program was conducted to further the professional knowledge of qualified engineering and science faculty members, to stimulate an exchange of ideas between participants and NASA, to enrich and refresh the research and teaching activities of participants' institutions, and to contribute to the research objectives of the NASA Centers
Research reports: The 1980 NASA/ASEE Summer Faculty Fellowship Program
The Summer Faculty Fellowship Research Program objectives are: to further the professional knowledge of qualified engineering and science faculty members; to stimulate an exchange of ideas between participants and NASA; to enrich and refresh the research and teaching activities of participants and institutions; and to contribute to the research objectives at the NASA centers. The Faculty Fellows engaged in research projects commensurate with their interests and background and worked in collaboration with a NASA/MSFC colleague
- …