15,127 research outputs found

    Development and validation of 'AutoRIF': Software for the automated analysis of radiation-induced foci

    Get PDF
    Copyright @ 2012 McVean et al; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.This article has been made available through the Brunel Open Access Publishing Fund.Background: The quantification of radiation-induced foci (RIF) to investigate the induction and subsequent repair of DNA double strands breaks is now commonplace. Over the last decade systems specific for the automatic quantification of RIF have been developed for this purpose, however to ask more mechanistic questions on the spatio-temporal aspects of RIF, an automated RIF analysis platform that also quantifies RIF size/volume and relative three-dimensional (3D) distribution of RIF within individual nuclei, is required. Results: A java-based image analysis system has been developed (AutoRIF) that quantifies the number, size/volume and relative nuclear locations of RIF within 3D nuclear volumes. Our approach identifies nuclei using the dynamic Otsu threshold and RIF by enhanced Laplacian filtering and maximum entropy thresholding steps and, has an application ‘batch optimisation’ process to ensure reproducible quantification of RIF. AutoRIF was validated by comparing output against manual quantification of the same 2D and 3D image stacks with results showing excellent concordance over a whole range of sample time points (and therefore range of total RIF/nucleus) after low-LET radiation exposure. Conclusions: This high-throughput automated RIF analysis system generates data with greater depth of information and reproducibility than that which can be achieved manually and may contribute toward the standardisation of RIF analysis. In particular, AutoRIF is a powerful tool for studying spatio-temporal relationships of RIF using a range of DNA damage response markers and can be run independently of other software, enabling most personal computers to perform image analysis. Future considerations for AutoRIF will likely include more complex algorithms that enable multiplex analysis for increasing combinations of cellular markers.This article is made available through the Brunel Open Access Publishing Fund

    Simulating Quantum Mechanics by Non-Contextual Hidden Variables

    Get PDF
    No physical measurement can be performed with infinite precision. This leaves a loophole in the standard no-go arguments against non-contextual hidden variables. All such arguments rely on choosing special sets of quantum-mechanical observables with measurement outcomes that cannot be simulated non-contextually. As a consequence, these arguments do not exclude the hypothesis that the class of physical measurements in fact corresponds to a dense subset of all theoretically possible measurements with outcomes and quantum probabilities that \emph{can} be recovered from a non-contextual hidden variable model. We show here by explicit construction that there are indeed such non-contextual hidden variable models, both for projection valued and positive operator valued measurements.Comment: 15 pages. Journal version. Only minor typo corrections from last versio

    A Strong X-Ray Burst from the Low Mass X-Ray Binary EXO0748-676

    Full text link
    We have observed an unusually strong X-ray burst as a part of our regular eclipse timing observations of the low mass binary system EXO0748-676. The burst peak flux was 5.2x10^-8 ergs cm^-2 s^-1, approximately five times the normal peak X-ray burst flux observed from this source by RXTE. Spectral fits to the data strongly suggest that photospheric radius expansion occurred during the burst. In this Letter we examine the properties of this X-ray burst, which is the first example of a radius expansion burst from EXO0748-676 observed by RXTE. We find no evidence for coherent burst oscillations. Assuming that the peak burst luminosity is the Eddington luminosity for a 1.4 solar mass neutron star we derive a distance to EXO0748-676 of 7.7 kpc for a helium-dominated burst photosphere and 5.9 kpc for a hydrogen-dominated burst photosphere.Comment: 15 pages including 2 figures and 1 table. Accepted for publication in the Astrophysical Journa

    No Signalling and Quantum Key Distribution

    Full text link
    Standard quantum key distribution protocols are provably secure against eavesdropping attacks, if quantum theory is correct. It is theoretically interesting to know if we need to assume the validity of quantum theory to prove the security of quantum key distribution, or whether its security can be based on other physical principles. The question would also be of practical interest if quantum mechanics were ever to fail in some regime, because a scientifically and technologically advanced eavesdropper could perhaps use post-quantum physics to extract information from quantum communications without necessarily causing the quantum state disturbances on which existing security proofs rely. Here we describe a key distribution scheme provably secure against general attacks by a post-quantum eavesdropper who is limited only by the impossibility of superluminal signalling. The security of the scheme stems from violation of a Bell inequality.Comment: Clarifications and minor revisions in response to comments. Final version; to appear in Phys. Rev. Let

    Causal Quantum Theory and the Collapse Locality Loophole

    Full text link
    Causal quantum theory is an umbrella term for ordinary quantum theory modified by two hypotheses: state vector reduction is a well-defined process, and strict local causality applies. The first of these holds in some versions of Copenhagen quantum theory and need not necessarily imply practically testable deviations from ordinary quantum theory. The second implies that measurement events which are spacelike separated have no non-local correlations. To test this prediction, which sharply differs from standard quantum theory, requires a precise theory of state vector reduction. Formally speaking, any precise version of causal quantum theory defines a local hidden variable theory. However, causal quantum theory is most naturally seen as a variant of standard quantum theory. For that reason it seems a more serious rival to standard quantum theory than local hidden variable models relying on the locality or detector efficiency loopholes. Some plausible versions of causal quantum theory are not refuted by any Bell experiments to date, nor is it obvious that they are inconsistent with other experiments. They evade refutation via a neglected loophole in Bell experiments -- the {\it collapse locality loophole} -- which exists because of the possible time lag between a particle entering a measuring device and a collapse taking place. Fairly definitive tests of causal versus standard quantum theory could be made by observing entangled particles separated by ≈0.1\approx 0.1 light seconds.Comment: Discussion expanded; typos corrected; references adde

    Efficient quantum key distribution secure against no-signalling eavesdroppers

    Get PDF
    By carrying out measurements on entangled states, two parties can generate a secret key which is secure not only against an eavesdropper bound by the laws of quantum mechanics, but also against a hypothetical "post-quantum" eavesdroppers limited by the no-signalling principle only. We introduce a family of quantum key distribution protocols of this type, which are more efficient than previous ones, both in terms of key rate and noise resistance. Interestingly, the best protocols involve large number of measurements. We show that in the absence of noise, these protocols can yield one secret bit per entanglement bit, implying that the key rates in the no-signalling post-quantum scenario are comparable to the key rates in usual quantum key distribution.Comment: 11 pages, 2 color figures. v2: minor modifications, added references, added note on the relation to quant-ph/060604

    New geometries for high spatial resolution hall probes

    Full text link
    The Hall response function of symmetric and asymmetric planar Hall effect devices is investigated by scanning a magnetized tip above a sensor surface while simultaneously recording the topography and the Hall voltage. Hall sensor geometries are tailored using a Focused Ion Beam, in standard symmetric and new asymmetric geometries. With this technique we are able to reduce a single voltage probe to a narrow constriction 20 times smaller than the other device dimensions. We show that the response function is peaked above the constriction, in agreement with numerical simulations. The results suggest a new way to pattern Hall sensors for enhanced spatial resolution.Comment: 12 pages, 5 figures, submitted to Journal of Applied Physic
    • …
    corecore