
Using Pro�les to Re-architect the UMLTony Clark�Andy EvansyStuart KentzApril 11, 2000Draft1 IntroductionCurrently, UML version 1.3 is de�ned a collection of UML meta-models (a def-inition of UML in a subset of itself). Each meta-model describes the structureof part of the language and provides a collection of well-formedness constraints.The semantics of the language are given as informal text. The de�nition is un-satisfactory because it is partial, unstructured and introduces questions relatingto the soundness of such a meta-circular language de�nition.Under the auspices of the precise UML (pUML) group we have proposed are-structuring and semantic de�nition of the current version of UML (1.3) [5].This work aims to provide a modular de�nition of the semantics that can supporta wide variety of pro�les. There are number of components to this de�nition:a kernel library, which provides a collection of modelling concepts essential tothe building of UML pro�les, an extension mechanism for constructing pro�lesas extensions of the kernel library or other pro�les, and a constraint languagefor expressing invariant properties of UML models. It is intended that oncecompleted, the kernel and associated domain speci�c pro�les will provide astandard reference library for the UML.In order to re-architect the UML we intend to perform the following:� De�ne a Meta-Modelling Sub-Language (MMSL) and use it to de�neUML. The MMSL is essentially a replacement for the MOF.� De�ne a pro�le mechanism that allows UML to be constructed from se-mantically rich packages.� De�ne a semantics for the MMSL and OCL.�Department of Computing, University of BradfordyDepartment of Computer Science, University of York, UKzComputing Laboratory, University of Kent, UK1

One of the key features of this approach is the notion of a pro�le. The currentUML 1.3 de�nition su�ers from being syntax-bound and semantics-free. OCL isused to express syntactic well-formedness constraints on UML models. However,there is no way of determining what a model means. Pro�les are a way ofde�ning model components in terms of both syntax and semantics. This paperaims to describe the concept of pro�le by an example. The paper is structuredas follows: section 2 describes key issues that must be addressed in order tore-architect UML 1.3; section 3 de�nes an architecture for re-structuring UML;section 4 de�nes the term pro�le as used in our approach; section 5 de�nesa pro�le that provides examples each of the key components of the approach;�nally, section 6 discusses issues of the approach and describes current andfuture work.2 Limitations of UML 1.32.1 Semantic FoundationTo de�ne a language requires (at least) an abstract syntax, a semantics domainand a relationship between the two to be de�ned (see [2] for more details). Inthe current UML semantics document, the abstract syntax is de�ned using ameta-model approach (class diagrams + OCL constraints), the semantics do-main is given in natural language as is the relationship between the syntax andsemantics. Thus the semantics document is not a precise or formal descriptionof the language. Such a description is required in order to facilitate: analysis;tool construction; modularity and composition; language extension; rigorousproof; and detailed comparison with other approaches.Our approach uses the MMSL to de�ne pro�les. The MMSL has a meta-circular de�nition and an external semantics using an object calculus [8]. Theobject calculus is hidden; its existence is essential in order to resolve fundamentalsemantic issues.2.2 Multiple Modelling LanguagesThe current version of UML provides a large number of modelling facilities.Because of this, there is a danger of becoming overloaded with too many con-cepts, many of which are not widely used except in very speci�c circumstances.For example, the de�nition of class diagrams (static model elements) supportsa wide variety of facilities for expressing constraints. In practice, these facilitiesare rarely used, or may be used inappropriately.In practice, it is very important to be able to construct di�erent semanticde�nitions for speci�c modelling domains. Some examples that have alreadybeen proposed for UML are: real-time, business and networking domains, amongothers. This has led to the notion of a UML pro�le[3]: a semantics de�nitionwhich is speci�cally aimed at supporting a single modelling domain.2

In order to re-architect the UML we require extension mechanisms for con-structing pro�les from pre-existing ones, thus enabling pro�le reuse. For exam-ple, it should be possible to have a core or kernel pro�le (introducing commonUML semantic concepts: classes, associations, operations, etc.), then for eachpro�le to import from the core, adding further concepts and placing restrictionson the use of imported concepts.2.3 Syntactic LimitationsThe UML 1.3 de�nition assumes that all concrete syntax has been transformedinto abstract syntax structures such as those manipulated internally by tools.Whilst this approach is acceptable if the mapping from concrete syntax to ab-stract syntax is one-to-one, this may not always be the case. In the proposedpro�ling approach we de�ne a simple MMSL and treat many aspects of UMLconcrete syntax as sugar. This raises the issue of how to de�ne a mappingbetween concrete and abstract syntax. A corollary is the issue of alternativesyntaxes for UML. Two examples where alternative syntaxes are desirable: ap-plication domain speci�c patterns; and providing graphical notations for OCL.2.4 Constraint LanguageOCL is currently used to de�ne well-formedness constraints in UML 1.3. Ourapproach views OCL as a fundamental component of the de�nition of UML.UML is constructed by composing pro�les. Each pro�le is a collection of classeswhose instances are constrained using OCL expressions. OCL is therefore amechanism for expressing both syntactic properties (i.e. well-formedness) andsemantic properties.We make one simple but powerful extension to OCL. The current de�nitionof OCL is weighted towards its use in de�ning invariants, operation pre- andpost-conditions and guards on state transitions. To determine whether any givenOCL expression is satis�ed requires a context containing information such asthe values of free variables. The context is implicit in the current de�nition ofOCL. We extend this by allowing OCL expressions to have explicit contexts;essentially this is achieved by allowing parameterisation over OCL expressions,turning OCL expressions into functions from a number of values to true orfalse.This extension allows users much greater freedom over where they placeOCL expressions. It is essential to allow OCL to be used to its full potential inmeta-models.3 An Architecture for UML SemanticsThis section briey summarises recent work done to provide a semantics archi-tecture for UML, which supports the precise de�nition of UML pro�les. Thiswork was presented as a response to the OMG's request for information (RFI)3

Kernel Constraint

Basics
Kernel Static

Basics

Kernel Model

Management

Kernel Behavioural

Besics

Profile A Profile B

Figure 1: Pro�le architectureregarding the next major release of UML (version 2.0) by the precise UML group[5]. The semantics architecture presented in [5] is based upon the use of meta-modelling to provide a precise denotational description of UML concepts. Thede�nition is structured into packages, based on a kernel library of languagede�nition tools and components. A pro�le is a de�nition of a language thatmay specialise and/or extend other pro�les, and incorporate components fromthe kernel library. Figure 1, shows the general architecture.The kernel library consists of a number of basic packages containing funda-mental UML concepts. These include:Static basics - generalised constructs for modelling the static properties ofsystems.Constraint basics - constructs relating to the expression of constraints.Dynamic basics - constructs for modelling the behaviour of systems.Model management basics - general mechanisms for extending and spe-cialising the components of the language.As shown, pro�les are extensions of these basic packages. An extensionmechanism, similar to that proposed in the Catalysis method [6] is used to copyelements from one package into another, whilst also permitting extension oftheir features.Each pro�le is organised into abstract syntax, semantics domain and a sat-isfaction/denotation relationship between the two (see Figure 2). Both abstractsyntax and semantics domain may have many concrete representations.The de�nition of UML using pro�les is underway. Our aims are to con-tribute to the UML 2.0 revision process to produce a modelling notation thatis manageable, extensible and semantics-rich. Pro�les are the building blocks4

Abstract

Syntax
Semantics

Denotational

Mapping

Figure 2: Pro�le semanticsof the approach. The rest of this paper gives the step by step construction ofa simple pro�le. The example UML diagrams have been constructed using theArgo/UML tool [7].4 Pro�lesA pro�le de�nes a language in terms of its syntax and semantics. Both thesyntax and semantics are described using the Meta-Modelling Sub-Languagewhich is the fundamental core language for UML. The syntax of a languagede�nes the components used to construct phrases in the domain of discourse.For example, if UML is the domain of discourse then phrases are composed fromclasses, objects and messages. If e-commerce is the domain of discourse then wemay talk about web-pages, input-�elds and data validation.The syntax of a language provides a weak modelling notation. We canuse OCL to describe well-formed-ness constraints on the syntax. These con-straints are essentially meaningless and cannot be validated since each syntacticphrase exists in a semantic vacuum. Modelling is strengthened by associatingeach syntactic phrase with meaning. Meaning is the semantics of a language,usually consisting of a collection of objects whose properties are simple andwell-understood.A UML pro�le consists of three essential components: a model of the syntax;a model of the semantics; a relationship between well-formed syntax phrasesand objects in the semantic domain. Each component is de�ned using theMMSL which consists of classes, associations, inheritance and OCL. A pro�leis therefore:� Amodel of the syntax domain given as a class diagram and well-formednessconstraints in OCL.� A model of the semantic domain given as a class diagram and well-5

Figure 3: Meta Model for Pro�leformedness constraints in OCL.� A semantic mapping that de�nes relationships between components ofthe syntax and semantic models. OCL is used to de�ne constraints on therelationships.Figure 3 shows a de�nition of the class Profile as part of the MMSL.A Classifier is a description of a category of data values. All pro�les areclassi�ers; they de�ne a relationship between syntactic objects and semanticobjects, or models. Objects classi�ed by a pro�le are de�ned to be those objectsclassi�ed by the semantic mapping of the pro�le.Profile is de�ned as a class with super-class Classifier. The associationssyntax and semantics de�ne the classes that are used to represent the syntacticand semantic objects in the pro�le. A pro�le is associated via relation to acollection of binary association classes. Each class holds between a syntax classand a semantics class:Profilerelation->forall(r |syntax.includes(r.associationEnd[1].type) andsemantics.includes(r.associationEnd[2].type)Invariants placed on the values of relation de�ne the classi�cation constraintsfor the pro�le. Typically there will be a single semantics class and a relation6

between it and each syntax class. If the relation is total and many to one thenthis constitutes a semantic function in the sense of denotational semantics.Our approach re-architects the UML using pro�les. Example pro�les are:� The static pro�le whose syntax is class diagrams and whose semantics isobjects with slots. The semantic mapping ensures that objects have slotscorresponding to the associations de�ned by the classes.� The OCL pro�le whose syntax is OCL and whose semantics is the twoelement value domain containing true and false. The semantic mappingevaluates the OCL expressions producing the outcome true or false.� The interaction pro�le whose syntax is interaction diagrams and whosesemantics is traces of messages between objects. The semantic mappingwill make particular choices of ordering and alternative interactions.Since pro�les encode the semantics of a modelling language they may be usedto check the equivalence of two or more pro�le instances. This technique canbe used to establish the rumoured equivalence of collaboration diagrams andsequence diagrams.5 Example Pro�lePro�les may be used to de�ne UML or to de�ne application speci�c languagesand their semantics. This section constructs a simple example pro�le from thedomain of web commerce. The essential features of the ECommerce pro�le are:� The syntactic domain is a language for expressing web pages supportingtext and user input.� The semantic domain denotes executions of a machine that records userinput and modi�es a collection of customer accounts.� The relationships between syntax and semantics link `evaluations' of theweb page in terms of user interactions with the corresponding changes incustomer accounts.5.1 Syntax DomainFigure 4 de�nes the classes in the syntax domain of the ECommerce pro�le. Eachclass represents a web page. WebPage is an abstract super-class. Text containsthe text that appears on a web page. Seq composes two web pages together;sophisticated displays are not modelled: web pages occur in sequence, usersaccess first and then press a next button to proceed to second. InputBoxis an area for user input. An input box is labelled and has two conditions (seebelow). Cond is a conditional component it has a guard and two components.If the guard is true (see below) then the page displayed is described by conseqotherwise alt is displayed. 7

Figure 4: Syntax for ECommerce Pro�leConditions are used to control the consequences of user input in a conditionalweb page. In both cases, the conditions are expressed using parameterised OCL.OCL must be evaluated in a context. The context of OCL is implicit in thecase where OCL is used to express class invariants, pre- and post-conditionsand guards on state transitions. Parameterised OCL allows the context tobe explicit, the values for the parameters are supplied by applying the OCLexpression to a value.The pre-condition of an input box is parameterised with respect to the pre-state and a value string. The pre-condition must be true with respect to thecurrent (pre-) state of the system and the current input value in order for theweb-page to allow the operator to proceed. The post-condition of an inputbox is parameterised with respect to the pre- and post-state of the system.The post-condition will usually specify a state change in terms of the pre-statevalues.Syntax domains typically have well-formedness constraints. An exampleconstraint for a web page is that all of the input box labels must be di�erent.Well-formedness constraints are de�ned using OCL. Firstly, we constrain eachof the syntactic domain classes to be associated with a set of labels:WebPagelabels = Setfg 8

InputBoxlabels = SetflabelgSeqlabels = first.labels->union(second.labels)Condlabels = conseq.labels->union(alt.labels)The well-formedness constraint that all labels must be unique on a web pagecan be expressed as follows:Seqfirst.labels->intersection(second.labels) = Setfg5.2 Semantic Domain

Figure 5: Semantics for ECommerce Pro�leFigure 5 de�nes the classes in the semantic domain of the ECommerce pro�le.A Trace is a sequence of Transitions. Each transition has a pre-state and apost-state. A State is a collection of Bindings and information on customerAccounts.Objects in the semantic domain are historical records of single user inter-actions with a web page that controls an interface to a collection of customeraccounts. Each transition occurs in response to a user input. Each user input isrecorded as a binding in the state environment. Typically a user input will cause9

the environment to be extended and possibly cause a change to the current stateof the customer accounts.A semantic domain has well-formedness constraints. These are expressedusing OCL. For example, the start and end transitions of any trace must bepart of the trace:Tracetransitions->exists(t | t.pre = start) andtransitions->exists(t | t.post = end)Any transition which is not at the start of a trace must have a unique preced-ing transition and any transition which is not at the end must have a uniquesucceeding transition:Tracetransitions->forall(t1 |not(t1.pre = start) implies transitions->exists(t2 |t1.pre = t2.post and transitions->forall(t3 |t1.pre = t3.post implies t2 = t3))) andtransitions->forall(t1 |not(t1.post = end) implies transitions->exists(t2 |t1.post = t2.pre and transitions->forall(t3 |t1.post = t3.pre implies t2 = t3)))All the names in the environment of a state must be unique:Stateenv->forall(b1 |env->forall(b2 |b1.name = b2.name implies b1 = b2))Transitions can either leave the current environment alone or may extend itwith a single binding:Transitionpost.env = pre.env or(post.env->setDifference(pre.env)->size = 1 andpost.env->setDifference(pre.env).name = label andpost.env->setDifference(pre.env).value = value)5.3 Semantic MappingFigure 6 shows the semantic mapping from elements of the ECommerce syntaxdomain to elements of the ECommerce semantics domain. The mapping consistsof 5 association classes. Each association class represents a relationship betweena di�erent syntax class and instances of the semantic domain class Trace. Theconstraints on each association class de�ne a mappings between instances of thesyntax classes and instances of the semantics classes. Each of these constraintsis described in turn.When a user observes text on a web page there is no change in the underlyingsystem state. This is recorded in the semantics as being no observable systemtransition: 10

Figure 6: Semantic Mapping for ECommerce Pro�leTextTracetrace.transitions->size = 0 andtrace.start = trace.endA conditional web page displays one of two alternatives depending on the out-come of a test. A conditional trace therefore has an extra sub-trace recordingwhether the consequent or alternative web page was displayed:CondTracewebPage.guard(trace.start) implieschosen.webPage = webPage.conseq andtrace = chosen.trace andnot(webPage.guard(trace.start)) implieschosen.webPage = webPage.alt andtrace = chosen.traceThe invariant on CondTrace provides an example of a parameterised OCL ex-pression. The expression webPage.guard is parameterised with respect to astate. An example guard that checks for no accounts is:fun(s:State) = s.accounts->size = 0A sequence of web pages is de�ned to be the concatenation of two sub-tracesrecorded as the first and second attributes of an instance of SeqTrace:SeqTrace 11

first.webPage = webPage.first andsecond.webPage = second.first andfirst.trace.last = second.trace.first andtrace.start = first.trace.start andtrace.end = second.trace.end andtrace.transitions = first.trace.transitions->union(second.trace.transitions)An input box is the only web page component that performs a state transition.A state change is performed only when the pre-condition of the input box istrue. If the pre-condition is false then the transition occurs but performs nostate change. Otherwise the state change must satisfy the post-condition of theinput box and the transition records the input data by adding it to the stateenvironment.InputBoxTracelet binding = trace.end.env->setDifference(trace.start.env)in trace.transitions->size = 1 andtrace.transitions.label = webPage.label andwebPage.pre(trace.start,trace.transitions.value) implies(binding.name = webPage.label andbinding.value = trace.transitions.value andwebPage.post(trace.start,trace.end)) andnot(webPage.pre(trace.start,trace.transitions.value)) impliestrace.start = trace.end5.4 Example ModelConsider a web page that is a single input box b labelled with name. The ideais that the operator can type in their name and this will create a new accountfor them if one does not already exist. The input will always succeed so theprecondition on the input box is true:b.pre = fun(s:State,n:String) = trueThe post-condition will only be true for transitions where the account alreadyexisted or has been created:b.post = fun(pre:State,post:State) =pre.accounts->exists(a |a.name = lookup(post.env,"name")) impliespre.accounts = post.accounts andnot pre.accounts->exists(a |a.name = lookup(post.env,"name")) implieslet newAccount = post.accounts->setDifference(pre.accounts)in newAccount->size = 1 andnewAcount.name = lookup(post.env,"name") andnewAccount.orders = Set{}
12

6 Analysis and Current WorkThis paper has motivated a requirement for re-architecting the current de�nitionof UML. It has proposed an approach to this task based on pro�les. A pro�le isa language de�nition given in terms of a syntax domain, a semantics domain anda semantic mapping. Using pro�les to de�ne UML leads to a family of modellinglanguages each constructed by composing library pro�les and introducing newapplication speci�c pro�les. The paper has given a simple example of a simplee-commerce pro�le.Re-architecting the UML is a very large task. We believe it is needed becausethe current de�nition (1.3) is not manageable and does not precisely address theissue of semantics. We intend to show that our approach is viable by de�ningthe meta-circular MMSL pro�le and using it to de�ne pro�les for representativesub-components of UML (such as class diagrams).Our longer-term aim is to provide a reference implementation for the UML.One manifestation of this would be a tool that could be used to check syntax andsemantic components that are used by other tools. The common interchangeformat would be and XMI variant that is based on the MMSL. A semanticarchitecture, such as that described in this paper, is a precursor to such a tool.References[1] OMG Uni�ed Modeling Language Speci�cation (1.3), Available fromhttp://www.omg.org, 1999.[2] Evans, A. S. & Kent, S: Meta-modelling semantics of UML: the pUMLapproach. 2nd International Conference on the Uni�ed Modeling Language.Editors: Rumpe, B. & France, R. Colorado, LNCS, 1723, 1999.[3] Cook S., Kleppe A. Mitchell R., Rumpe B., Warmer J. &Wills A.: De�ningUML Family Members Using Prefaces. In Technology of Object-OrientedLanguages and Systems, TOOL '99 Paci�cEditors: Mingins Ch. & MeyerB. IEEE Computer Society.[4] Warmer J. & Kleppe A.: The Object Constraint Language: Precise Mod-elling with UML. Addison-Wesley, 1998.[5] Clark A., Evans A., France R., Kent S. & Rumpe B.: Response to UML 2.0Request for Information. Available at http://www.cs.york.ac.uk. 1999.[6] D'Souza D. F. & Wills A.: Objects, Components and Frameworks withUML. Addison-Wesley, 1999.[7] The ArgoUML Case Tool available at http://argouml.tigris.org/.[8] Clark A., Evans A. & Kent S.: The Speci�cation of A Reference Imple-mentation for the Uni�ed Modelling Language. Submitted to the L'ObjetJournal, February 2000. 13

