20 research outputs found

    Spatially Explicit Network Analysis Reveals Multiā€Species Annual Cycle Movement Patterns of Sea Ducks

    Get PDF
    Conservation of longā€distance migratory species poses unique challenges. Migratory connectivity, that is, the extent to which groupings of individuals at breeding sites are maintained in wintering areas, is frequently used to evaluate population structure and assess use of key habitat areas. However, for species with complex or variable annual cycle movements, this traditional bimodal framework of migratory connectivity may be overly simplistic. Like many other waterfowl, sea ducks often travel to specific preā€ and postā€breeding sites outside their nesting and wintering areas to prepare for migration by feeding extensively and, in some cases, molting their flight feathers. These additional migrations may play a key role in population structure, but are not included in traditional models of migratory connectivity. Network analysis, which applies graph theory to assess linkages between discrete locations or entities, offers a powerful tool for quantitatively assessing the contributions of different sites used throughout the annual cycle to complex spatial networks. We collected satellite telemetry data on annual cycle movements of 672 individual sea ducks of five species from throughout eastern North America and the Great Lakes. From these data, we constructed a multiā€species network model of migratory patterns and site use over the course of breeding, molting, wintering, and migratory staging. Our results highlight interā€ and intraā€specific differences in the patterns and complexity of annual cycle movement patterns, including the central importance of staging and molting sites in James Bay, the St. Lawrence River, and southern New England to multiā€species annual cycle habitat linkages, and highlight the value of Longā€tailed Ducks (Calengula haemalis) as an umbrella species to represent the movement patterns of multiple sea duck species. We also discuss potential applications of network migration models to conservation prioritization, identification of population units, and integrating different data streams

    Implanted Satellite Transmitters Affect Sea Duck Movement Patterns at Short and Long Timescales

    Get PDF
    Studies of the effects of transmitters on wildlife often focus on survival. However, sublethal behavioral changes resulting from radio-marking have the potential to affect inferences from telemetry data and may vary based on individual and environmental characteristics. We used a long-term, multi-species tracking study of sea ducks to assess behavioral patterns at multiple temporal scales following implantation of intracoelomic satellite transmitters. We applied state-space models to assess short-term behavioral patterns in 476 individuals with implanted satellite transmitters, as well as comparing breeding site attendance and migratory phenology across multiple years after capture. In the short term, our results suggest an increase in dispersive behavior immediately following capture and transmitter implantation; however, behavior returned to seasonally average patterns within ~5 days after release. Over multiple years, we found that breeding site attendance by both males and females was depressed during the first breeding season after radio-marking relative to subsequent years, with larger relative decreases in breeding site attendance among males than females. We also found that spring and breeding migrations occurred later in the first year after radio-marking than in subsequent years. Across all behavioral effects, the severity of behavioral change often varied by species, sex, age, and capture season. We conclude that, although individuals appear to adjust relatively quickly (i.e. within 1 week) to implanted satellite transmitters, changes in breeding phenology may occur over the longer term and should be considered when analyzing and reporting telemetry data

    Survival of Radiomarked Canvasback Ducklings in Northwestern Minnesota

    Get PDF
    Duckling survival, an important factor affecting annual recruitment, has not been determined adequately for canvasbacks (Aythya valisineria). We investigated the magnitude, timing, and causes of mortality of canvasback ducklings from hatch to fledging at the Agassiz National Wildlife Refuge (NWR) in northwestern Minnesota during 1987-90. During the 4 years, 217 day-old ducklings were radiomarked and released in 52 broods. Another 141 ducklings were radiomarked at \u3e 4 weeks of age. Survival was estimated with the Kaplan-Meier nonparametric estimator and the Weibull parametric model. Most mortalities occurred within 10 days after hatch. Total brood loss occurred in 18 (35%) of 52 broods released. The primary sources of mortality were predation, principally by mink (Mustela vison), and exposure to precipitation and cold temperature. For combined years, females had lower survival than males (P = 0.03). If the disparate survival between sexes of canvasbacks observed in this study is representative of canvasbacks in their breeding range, this phenomenon contributes to reduced reproductive potential and the male-biased sex ratio of the species

    HUSBANDRY REPORTS Handā€Rearing, Growth, and Development of Common Loon (Gavia Immer) Chicks

    Get PDF
    Common loon chicks were reared in captivity in association with studies to evaluate the effects of radiotransmitter implants and to assess the ecological risk of dietary methylmercury. Here we report on hatching and rearing methods used to successfully raise chicks to 105 days of age. We experienced a 91.5% hatch rate, and 89.6% of loon chicks survived to the end of the study at 105 days. Baseline information on observed rates of fish consumption, behavioral development, and growth patterns are provided. Husbandry techniques are provided that should prove valuable to wildlife rehabilitators caring for abandoned or injured loons, and biologists contemplating methods for restoring loons to areas within their former breeding range
    corecore