467 research outputs found

    Young offenders on community orders: Health, welfare and criminogenic needs

    Get PDF

    Plane of nutrition affects the phylogenetic diversity and relative abundance of transcriptionally active methanogens in the bovine rumen

    Get PDF
    peer-reviewedMethane generated during enteric fermentation in ruminant livestock species is a major contributor to global anthropogenic greenhouse gas emissions. A period of moderate feed restriction followed by ad libitum access to feed is widely applied in cattle management to exploit the animal’s compensatory growth potential and reduce feed costs. In the present study, we utilised microbial RNA from rumen digesta samples to assess the phylogenetic diversity of transcriptionally active methanogens from feed-restricted and non-restricted animals. To determine the contribution of different rumen methanogens to methanogenesis during dietary restriction of cattle, we conducted high-throughput mcrA cDNA amplicon sequencing on an Illumina MiSeq and analysed both the abundance and phylogenetic origin of different mcrA cDNA sequences. When compared to their unrestricted contemporaries, in feed-restricted animals, the methanogenic activity, based on mcrA transcript abundance, of Methanobrevibacter gottschalkii clade increased while the methanogenic activity of the Methanobrevibacter ruminantium clade and members of the Methanomassiliicoccaceae family decreased. This study shows that the quantity of feed consumed can evoke large effects on the composition of methanogenically active species in the rumen of cattle. These data potentially have major implications for targeted CH4 mitigation approaches such as anti-methanogen vaccines and/or tailored dietary management

    A comparison of Colletotrichum species associated with berry diseases of Coffea arabica L.

    Get PDF
    Forty isolates of Colletotrichum species associated with coffee berry anthracnose in Papua New Guinea were characterised and identified on the basis of cultural, morphological and molecular characteristics. Of these, 29 isolates were identified as C. gloeosporioides, while the 11 remaining were identified as C. acutatum. None of the isolates had characteristics common to C. kahawae

    Effect of dietary restriction and subsequent re-alimentation on the transcriptional profile of bovine jejunal epithelium

    Get PDF
    peer-reviewedCompensatory growth (CG), an accelerated growth phenomenon which occurs following a period of dietary restriction is utilised worldwide in animal production systems as a management practise to lower feed costs. The objective of this study was to evaluate the contribution of jejunal epithelial to CG in cattle through transcriptional profiling following a period of dietary restriction as well as subsequent re-alimentation induced CG. Sixty Holstein Friesian bulls were separated into two groups; RES and ADLIB, with 30 animals in each. RES animals were offered a restricted diet for 125 days (Period 1) followed by ad libitum feeding for 55 days (Period 2). ADLIB animals had ad libitum access to feed across both periods 1 and 2. At the end of each period, 15 animals from each treatment group were slaughtered, jejunal epithelium collected and RNAseq analysis performed. Animals that were previously diet restricted underwent CG, gaining 1.8 times the rate of their non-restricted counterparts. Twenty-four genes were differentially expressed in RES compared to ADLIB animals at the end of Period 1, with only one gene, GSTA1, differentially expressed between the two groups at the end of Period 2. When analysed within treatment (RES, Period 2 v Period 1), 31 genes were differentially expressed between diet restricted and animals undergoing CG. Dietary restriction and subsequent re-alimentation were associated with altered expression of genes involved in digestion and metabolism as well as those involved in cellular division and growth. Compensatory growth was also associated with greater expression of genes involved in cellular protection and detoxification in jejunal epithelium. This study highlights some of the molecular mechanisms regulating the response to dietary restriction and subsequent re-alimentation induced CG in cattle; however the gene expression results suggest that most of the CG in jejunal epithelium had occurred by day 55 of re-alimentation

    Effect of Dietary Restriction and Subsequent Re-Alimentation on the Transcriptional Profile of Bovine Skeletal Muscle

    Get PDF
    peer-reviewedCompensatory growth (CG), an accelerated growth phenomenon which occurs following a period of dietary restriction is exploited worldwide in animal production systems as a method to lower feed costs. However the molecular mechanisms regulated CG expression remain to be elucidated fully. This study aimed to uncover the underlying biology regulating CG in cattle, through an examination of skeletal muscle transcriptional profiles utilising next generation mRNA sequencing technology. Twenty Holstein Friesian bulls were fed either a restricted diet for 125 days, with a target growth rate of 0.6 kg/day (Period 1), following which they were allowed feed ad libitum for a further 55 days (Period 2) or fed ad libitum for the entirety of the trial. M. longissimus dorsi biopsies were harvested from all bulls on days 120 and 15 of periods 1 and 2 respectively and RNAseq analysis was performed. During realimentation in Period 2, previously restricted animals displayed CG, growing at 1.8 times the rate of the ad libitum control animals. Compensating animals were also more feed efficient during re-alimentation and compensated for 48% of their previous dietary restriction. 1,430 and 940 genes were identified as significantly differentially expressed (Benjamini Hochberg adjusted P < 0.1) in periods 1 and 2 respectively. Additionally, 2,237 genes were differentially expressed in animals undergoing CG relative to dietary restriction. Dietary restriction in Period 1 was associated with altered expression of genes involved in lipid metabolism and energy production. CG expression in Period 2 occurred in association with greater expression of genes involved in cellular function and organisation. This study highlights some of the molecular mechanisms regulating CG in cattle. Differentially expressed genes identified are potential candidate genes for the identification of biomarkers for CG and feed efficiency, which may be incorporated into future breeding programme

    Characterisation of the Whole Blood mRNA Transcriptome in Holstein-Friesian and Jersey Calves in Response to Gradual Weaning

    Get PDF
    peer-reviewedWeaning of dairy calves is an early life husbandry management practice which involves the changeover from a liquid to a solid feed based diet. The objectives of the study were to use RNA-seq technology to examine the effect of (i) breed and (ii) gradual weaning, on the whole blood mRNA transcriptome of artificially reared Holstein-Friesian and Jersey calves. The calves were gradually weaned over 14 days (day (d) -13 to d 0) and mRNA transcription was examined one day before gradual weaning was initiated (d -14), one day after weaning (d 1), and 8 days after weaning (d 8). On d -14, 550 genes were differentially expressed between Holstein-Friesian and Jersey calves, while there were 490 differentially expressed genes (DEG) identified on d 1, and 411 DEG detected eight days after weaning (P 0.05). The pathways, gene ontology terms, and biological functions consistently over-represented among the DEG between Holstein-Friesian and Jersey were associated with the immune response and immune cell signalling, specifically chemotaxis. Decreased transcription of several cytokines, chemokines, immunoglobulin-like genes, phagocytosis-promoting receptors and g-protein coupled receptors suggests decreased monocyte, natural killer cell, and T lymphocyte, chemotaxis and activation in Jersey compared to Holstein-Friesian calves. Knowledge of breed-specific immune responses could facilitate health management practices better tailored towards specific disease sensitivities of Holstein-Friesian and Jersey calves. Gradual weaning did not compromise the welfare of artificially-reared dairy calves, evidenced by the lack of alterations in the expression of any genes in response to gradual weaning.This research was made possible by funding, provided by the Department of Agriculture and Food Stimulus Fund 11/S/16 and EU PLF (RMIS 6311) project 311825. DJ was in receipt of a Teagasc Walsh Fellowship funded scholarship (WF2013216)

    Enteric methane research and mitigation strategies for pastoral-based beef cattle production systems

    Get PDF
    peer-reviewedRuminant livestock play a key role in global society through the conversion of lignocellulolytic plant matter into high-quality sources of protein for human consumption. However, as a consequence of the digestive physiology of ruminant species, methane (CH4), which originates as a byproduct of enteric fermentation, is accountable for 40% of global agriculture's carbon footprint and ~6% of global greenhouse gas (GHG) emissions. Therefore, meeting the increasing demand for animal protein associated with a growing global population while reducing the GHG intensity of ruminant production will be a challenge for both the livestock industry and the research community. In recent decades, numerous strategies have been identified as having the potential to reduce the methanogenic output of livestock. Dietary supplementation with antimethanogenic compounds, targeting members of the rumen methanogen community and/or suppressing the availability of methanogenesis substrates (mainly H2 and CO2), may have the potential to reduce the methanogenic output of housed livestock. However, reducing the environmental impact of pasture-based beef cattle may be a challenge, but it can be achieved by enhancing the nutritional quality of grazed forage in an effort to improve animal growth rates and ultimately reduce lifetime emissions. In addition, the genetic selection of low-CH4-emitting and/or faster-growing animals will likely benefit all beef cattle production systems by reducing the methanogenic potential of future generations of livestock. Similarly, the development of other mitigation technologies requiring minimal intervention and labor for their application, such as anti-methanogen vaccines, would likely appeal to livestock producers, with high uptake among farmers if proven effective. Therefore, the objective of this review is to give a detailed overview of the CH4 mitigation solutions, both currently available and under development, for temperate pasture-based beef cattle production systems. A description of ruminal methanogenesis and the technologies used to estimate enteric emissions at pastures are also presented.Funding and support from the FACCE ERA-GAS RumenPredict grant (16/RD/ERAGAS/1RUMENPREDICTROI 2017) and Horizon 2020 MASTER grant (818368) is acknowledged. PS was funded by a Teagasc Walsh Scholarship (RMIS 0364)

    Effect of divergence in residual methane emissions on feed intake and efficiency, growth and carcass performance, and indices of rumen fermentation and methane emissions in finishing beef cattle

    Get PDF
    peer-reviewedResidual expressions of enteric emissions favor a more equitable identification of an animal’s methanogenic potential compared with traditional measures of enteric emissions. The objective of this study was to investigate the effect of divergently ranking beef cattle for residual methane emissions (RME) on animal productivity, enteric emissions, and rumen fermentation. Dry matter intake (DMI), growth, feed efficiency, carcass output, and enteric emissions (GreenFeed emissions monitoring system) were recorded on 294 crossbred beef cattle (steers = 135 and heifers = 159; mean age 441 d (SD = 49); initial body weight (BW) of 476 kg (SD = 67)) at the Irish national beef cattle performance test center. Animals were offered a total mixed ration (77% concentrate and 23% forage; 12.6 MJ ME/kg of DM and 12% CP) ad libitum with emissions estimated for 21 d over a mean feed intake measurement period of 91 d. Animals had a mean daily methane emissions (DME) of 229.18 g/d (SD = 45.96), methane yield (MY) of 22.07 g/kg of DMI (SD = 4.06), methane intensity (MI) 0.70 g/kg of carcass weight (SD = 0.15), and RME 0.00 g/d (SD = 0.34). RME was computed as the residuals from a multiple regression model regressing DME on DMI and BW (R2 = 0.45). Animals were ranked into three groups namely high RME (>0.5 SD above the mean), medium RME (±0.5 SD above/below the mean), and low RME (>0.5 SD below the mean). Low RME animals produced 17.6% and 30.4% less (P < 0.05) DME compared with medium and high RME animals, respectively. A ~30% reduction in MY and MI was detected in low versus high RME animals. Positive correlations were apparent among all methane traits with RME most highly associated with (r = 0.86) DME. MY and MI were correlated (P < 0.05) with DMI, growth, feed efficiency, and carcass output. High RME had lower (P < 0.05) ruminal propionate compared with low RME animals and increased (P < 0.05) butyrate compared with medium and low RME animals. Propionate was negatively associated (P < 0.05) with all methane traits. Greater acetate:propionate ratio was associated with higher RME (r = 0.18; P < 0.05). Under the ad libitum feeding regime deployed here, RME was the best predictor of DME and only methane trait independent of animal productivity. Ranking animals on RME presents the opportunity to exploit interanimal variation in enteric emissions as well as providing a more equitable index of the methanogenic potential of an animal on which to investigate the underlying biological regulatory mechanisms.FACCE ERA-GA

    Academic neurosurgery in the UK: present and future directions.

    Get PDF
    Academic neurosurgery encompasses basic science and clinical research efforts to better understand and treat diseases of relevance to neurosurgical practice, with the overall aim of improving treatment and outcome for patients. In this article, we provide an overview of the current and future directions of British academic neurosurgery. Training pathways are considered together with personal accounts of experiences of structured integrated clinical academic training and unstructured academic training. Life as an academic consultant is also described. Funding is explored, for the specialty as a whole and at the individual level. UK academic neurosurgical organisations are highlighted. Finally, the UK's international standing is considered
    • …
    corecore