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Abstract

Compensatory growth (CG), an accelerated growth phenomenon which occurs following a

period of dietary restriction is utilised worldwide in animal production systems as a manage-

ment practise to lower feed costs. The objective of this study was to evaluate the contribu-

tion of jejunal epithelial to CG in cattle through transcriptional profiling following a period of

dietary restriction as well as subsequent re-alimentation induced CG. Sixty Holstein Friesian

bulls were separated into two groups; RES and ADLIB, with 30 animals in each. RES ani-

mals were offered a restricted diet for 125 days (Period 1) followed by ad libitum feeding for

55 days (Period 2). ADLIB animals had ad libitum access to feed across both periods 1 and

2. At the end of each period, 15 animals from each treatment group were slaughtered, jeju-

nal epithelium collected and RNAseq analysis performed. Animals that were previously diet

restricted underwent CG, gaining 1.8 times the rate of their non-restricted counterparts.

Twenty-four genes were differentially expressed in RES compared to ADLIB animals at the

end of Period 1, with only one gene, GSTA1, differentially expressed between the two

groups at the end of Period 2. When analysed within treatment (RES, Period 2 v Period 1),

31 genes were differentially expressed between diet restricted and animals undergoing CG.

Dietary restriction and subsequent re-alimentation were associated with altered expression

of genes involved in digestion and metabolism as well as those involved in cellular division

and growth. Compensatory growth was also associated with greater expression of genes

involved in cellular protection and detoxification in jejunal epithelium. This study highlights

some of the molecular mechanisms regulating the response to dietary restriction and subse-

quent re-alimentation induced CG in cattle; however the gene expression results suggest

that most of the CG in jejunal epithelium had occurred by day 55 of re-alimentation.

Introduction

In the wild, animals encounter periods of nutrient abundance as well as times of nutrient defi-

ciency. In order to cope with fluctuations in nutrient availability, many animals have evolved
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the capacity to display accelerated tissue growth and deposition during times of elevated nutri-

ent abundance [1]. Termed compensatory growth (CG), this naturally occurring phenomenon

enables animals to undergo enhanced growth and efficiency upon re-alimentation following a

prior dietary restriction [2]. The occurrence of CG has been incorporated into many livestock

production systems, particularly for cattle as a method to reduce feed input costs [2]. However,

although this naturally occurring phenomenon is utilised worldwide [3–6], there is a dearth of

knowledge in relation to the molecular control regulating the expression of the trait in cattle.

Previous molecular based analyses of this trait, by our own group in muscle, liver and ruminal

papillae tissues have indicated alterations in the expression of genes involved in processes

including metabolism, cellular division and growth and cellular organisation during CG [7–9].

However further investigations into the molecular expression of this trait in other metaboli-

cally important tissues is warranted, as a greater understanding of the control of CG at the

molecular level would lead to better exploitation and possible incorporation of this economi-

cally important trait into genomic selection breeding programs for beef cattle.

Organs including components of the gastrointestinal tract have repeatedly been shown to

display accelerated growth upon re-alimentation following a prior dietary restriction [3–6].

Indeed, metabolic organs including the gastrointestinal tract and liver typically display the

initial greatest growth rates and can compensate before other tissues or organs in the body

[10] which may be regarded as a direct response to increased metabolic activity as a conse-

quence of increased dietary intake [6]. Moreover, a number of studies have noted physical

alterations to intestinal epithelium following dietary restriction and subsequent re-alimenta-

tion induced CG in rodents [11–12]; fish [13] and reptiles [14] as well as in livestock species

such as goats [15] and pigs [16]. In these studies small intestinal atrophy and structural

changes, including the disappearance of villi and a reduction in the size and number of crypts,

was evident in response to both moderate and severe dietary restriction. However, during sub-

sequent re-alimentation and associated CG, an increase in intestinal surface area and restora-

tion of intestinal epithelium was apparent. Moreover, the small intestine which plays a central

role in starch utilisation and nutrient absorption has been shown to adapt to altering planes of

nutrition in cattle through modifying tissue form and function [17]. Therefore, the objective of

this study was to examine the transcriptional profile of the jejunum, which is of primary

importance as a site of digestion and also in the absorption of nutrients through the intestinal

wall, in response to a period of dietary restriction and also a period of re-alimentation induced

CG. During CG our attention was focused on the first 55 days of re-alimentation in order to

capture the maximal accelerated growth of re-alimentation [2]. Additionally, during CG ani-

mals are typically more feed efficient, thus a secondary objective was to evaluate the contribu-

tion of jejunal epithelial to the improved feed efficiency apparent during CG.

Materials and methods

The University College Dublin Animal Research Ethics Committee approved all procedure

using animals and the current study was licensed by the Irish Department of Health and Chil-

dren in accordance with the European Community Directive 86/609/EC.

Animal management

This experiment was performed as a component of a larger research programme aimed at

describing the effect of dietary restriction and subsequent re-alimentation on overall body

physiology [6, 18]. Details of the management of animals used are outlined in full in Keogh

et al. [6, 18] and are only briefly described here. Sixty Holstein Friesian bulls (mean (SEM) age:

479 (15) days; bodyweight 370 (35) kg) were separated into two groups; RES and ADLIB, with
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30 animals in each. RES animals were offered a restricted diet for 125 days (Period 1) followed

by ad libitum access to feed for 55 days (Period 2). ADLIB animals had ad libitum access to

feed across both periods 1 and 2. All animals received the same diet consisting of 70:30 concen-

trate:forage (grass silage) throughout the entire trial, but with a differing proportion based on

treatment group. The concentrate ration consisted of rolled barley (72.5%), soyabean meal

(22.5%), molasses (3%) and mineral supplement (2%). Additionally all animals were individu-

ally fed, with the proportion of feed offered based on individual bodyweight and animals were

weighed regularly throughout the trial. On average, RES animals consumed 57% less feed than

the ADLIB group during Period 1. During the dietary restriction phase (Period 1) RES animals

were managed to grow at 0.6 kg/day. At the end of each period 15 animals from each group,

RES and ADLIB were slaughtered.

Tissue sampling

All animals were humanely slaughtered in an EU licensed abattoir (Euro Farm Foods Ltd,

Cooksgrove, Duleek, Co. Meath, Ireland) through captive bolt stunning followed by exsangui-

nation and all tissue samples were harvested post slaughter. Jejunal tissue (10 cm) was har-

vested approximately 30 cm distal to the duodenal-jejunal juncture. Samples were collected

and placed in Dulbecco phosphate buffered saline (DPBS) to remove any digesta. Jejunum sec-

tions were initially washed in DPBS and subsequently cut along the longitudinal axis to allow

the tissue to be laid flat. Following opening of the tissue, jejunum epithelium samples were

washed for a second time in DPBS to ensure that no digesta remained on the tissue. Epithelial

tissue was then scraped from the underlying connective and muscular tissue using a glass

microscope slide. The tissue was then placed in a collection tube snap frozen in liquid nitrogen

and subsequently stored at -80˚C.

RNA isolation, sequencing and bioinformatics analysis

RNA isolation, cDNA library preparation and sequencing as well as bioinformatic analysis

have been outlined previously [8, 9] and are only briefly described here. Total RNA was iso-

lated from approximately 30 mg of frozen jejunal epithelium using an RNeasy Mini Kit (Qia-

gen, UK), according to the manufacturer’s instructions. The quantity of RNA and RNA

integrity were determined using a Nanodrop spectrophotometer ND-1000 (Nanodrop Tech-

nologies, Wilmington, DE, USA) and the RNA 6000 Nano Lab Chip kit (Agilent Technologies

Ireland Ltd., Dublin, Ireland), respectively. Only high quality RNA samples (RNA integrity

numbers >8) were selected for subsequent RNA sequencing (10 samples from each treatment

group at each slaughter time-point). cDNA libraries were prepared from 3 μg of high quality

total RNA using the Illumina TruSeq RNA sample prep kit following the manufacturer’s

instructions (Illumina, San Diego, CA, USA). In total, 40 individual RNAseq libraries were

multiplexed according to their respective sample specific adapters and 100 base-pair single end

sequencing was performed across 4 flowcell lanes on an Illumina HiSeq 2000 sequencer.

Raw sequence reads were first checked for quality using FASTQC software (version 0.10.0)

and were then trimmed of low quality reads using Trim Galore. Trimmed reads were then

aligned to the bovine reference genome (UMD3.1) using TopHat (v2.0.9) and HTSeq

(v0.5.4p5) (http://pypi.python.org/pypi/HTSeq) was used to calculate the number of sequence

reads aligned to all protein-coding genes from the ENSEMBL v74 annotation of the bovine

genome. EdgeR (v3.4.1), was then used to identify statistically significant (P<0.05) differen-

tially expressed genes (DEGs), through a generalised linear model likelihood ratio test. The fol-

lowing treatment comparisons were tested for DEGs: (i) RES v. ADLIB at the end of Period 1;

(ii) RES v. ADLIB at the end of Period 2; (iii) RES Period 2 v. RES Period 1; and (iv) ADLIB
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Period 2 v. ADLIB Period 1. Statistically significant (P<0.05) DEGs with a Benjamini-Hoch-

berg false discovery rate of< 0.1% were deemed to be significant. Pathway and functional

analyses of DEGs were then undertaken using Ingenuity Pathway Analysis (IPA; v. 8.8, Inge-

nuity Systems, Mountain View, CA; http://www.ingenuity.com).

Results

Animal performance

The effect of dietary regimen on body-weight gain, feed intake and animal performance are

outlined in detail by Keogh et al. [6]. Briefly, following 125 days of differential feeding at the

end of Period 1, RES animals were 161 kg lighter than ADLIB animals (RES: 442 v ADLIB: 603

kg, respectively). A period of 55 days of ad libitum feeding for both groups in Period 2, resulted

in a reduction in the body weight difference between treatment groups (84 kg difference; 594

and 678 kg for RES and ADLIB, respectively). Overall, animals undergoing re-alimentation

induced CG compensated for 48% of their previous under-performance in only 55 days of re-

alimentation. During Period 1 body-weight gain for RES animals was 0.6 kg/day, whilst

ADLIB animals gained 1.9 kg/day during the same time. Following a period of re-alimentation

in Period 2, RES animals gained 2.5 kg/day with ADLIB animals growing at 1.4 kg/day. RES

animals had a lower overall dietary intake during Period 1; however, during Period 2 there was

no difference in intake between treatment groups. As a consequence, feed efficiency index,

feed conversion ratio was enhanced in RES during re-alimentation in Period 2 (4.87) com-

pared to RES Period 1 and ADLIB animals across both periods (Period 1: RES: 9.5; ADLIB:

6.71; Period 2: ADLIB: 9.98).

mRNA read alignment and differential gene expression

Approximately 83% of RNAseq reads aligned to the bovine genome, and approximately 70%

of those that were aligned, were mapped to protein coding genes. At the end of Period 1,

13,685 genes were expressed with 13,605 genes expressed at the end of Period 2. Following a

period of dietary restriction, at the end of Period 1, 24 genes were identified as differentially

expressed in RES compared to ADLIB animals. However, following 55 days of subsequent re-

alimentation only one gene, GSTA1 (P< 0.001; fold change: 6.94) was differentially expressed

between treatment groups. When the data were analysed within treatment (RES, Period 2 v

Period 1), 31 genes were observed to be differentially expressed in animals undergoing CG

compared to their contemporaries during earlier dietary restriction. Only one gene was identi-

fied as differentially expressed within the ADLIB group between Period 1 and 2; ANPEP was

down-regulated in ADLIB Period 2 compared to ADLIB Period 1 (P< 0.001; fold change:

4.14). RNAseq data from the current study are available on NCBI’s Gene Expression Omnibus

[19] through GEO Series accession number GSE94004.

Pathway analysis

Of the 24 DEGs at the end of Period 1, 18 genes were successfully mapped to a molecular or

biological pathway and/or category in the IPA database. Fold changes of genes identified as

differentially expressed at the end of Period 1, between RES and ADLIB animals are presented

in Table 1. When analysed within the RES treatment (Period 2 v Period 1), of the 31 genes dif-

ferentially expressed 30 genes were successfully mapped to a molecular or biological pathway

and/or category in the IPA database. Differentially expressed genes within the RES treatment

group are outlined in Table 2. DEGs for each comparison were analysed and assigned to par-

ticular biological functions within IPA. Within the RES treatment, when gene lists for Period 2
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were compared with Period 1, genes involved in processes including amino acid, lipid and car-

bohydrate metabolism, as well as cellular growth and proliferation and cellular survival were

all found to be differentially expressed (P< 0.05). Biological categories identified within IPA

at the end of Period 1 between RES and ADLIB treatments are presented in Fig 1, with biologi-

cal categories identified at the end of Period 2 relative to the end of Period 1 in RES animals

presented in Fig 2. Specific genes pertaining to each biological category for Figs 1 and 2 are

outlined in S1 Table and S2 Table respectively.

Discussion

The accelerated growth phenomenon that is CG is widely known to occur in ruminant species

and indeed is utilised in many production settings in order to reduce feed costs [2, 4, 5, 20].

The gastrointestinal tract has previously been shown to be one of the most responsive organs

to both dietary restriction and subsequent CG [3–6], thus our attention was focused on exam-

ining the transcriptional profile of the jejunum, which is of primary importance as a site of

digestion and also in the absorption of nutrients through the intestinal wall. The objective of

the current study was to evaluate the transcriptional response of jejunal epithelial to the

expression of CG. This was achieved through an examination of DEGs in jejunal epithelial fol-

lowing a period of dietary restriction and also a period of subsequent re-alimentation com-

pared to that of animals that were fed continuously. Additionally, in order to further assess the

effect of CG on the jejunal transcriptome, sequencing data were analysed within treatment

group. When analysed within treatment across time, the larger difference in DEGs between

RES and ADLIB groups (RES: 31 DEGs, ADLIB: 1 DEG) suggests that the RES treatment

group over time analysis is reflective of CG and not of normal growth as described in the

ADLIB DEG profile.

Table 1. Genes differentially expressed in jejunal epithelial following a period of dietary restriction at the end of

Period 1.

Gene ID Gene name Fold change1

ANPEP Alanyl (membrane) aminopeptidase -26.2

ANXA10 Annexin A10 -4.4

AP3B2 Adaptor-related protein complex 3, beta 2 subunit -8.7

ASIC3 Acid sensing (proton gated) ion channel 3 -11.3

ASNS Asparagine synthetase (glutamine-hydrolyzing) 2.3

CARS Cysteinyl-tRNA synthetase 1.6

CTSW Cathepsin W 1.9

DAPL1 Death associated protein-like 1 -6.7

ELL3 Elongation factor RNA polymerase II-like 3 -3.9

INSIG1 Insulin induced gene 1 -1.9

OLFML3 Olfactomedin-like 3 2.0

PAPSS2 3’-phosphoadenosine 5’-phosphosulfate synthase 2 -3.5

PGA3 Pepsinogen-3 -2.8

S100A2 S100 calcium binding protein A2 -2.8

SDS Serine dehydratase -3.1

SLC1A5 Solute carrier family 1 (neutral amino acid transporter), member 5 2.0

SLC7A5 Solute carrier family 7 (amino acid transporter light chain, L system), member 5 2.1

WNT2 Wingless-type MMTV integration site family member 2 2.2

1 Fold changes are up or down in restricted fed animals compared to ad libitum fed control animals

https://doi.org/10.1371/journal.pone.0194445.t001
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Digestion and metabolism

We observed DEGs coding for proteins involved in digestion and metabolism following a

period of dietary restriction as well as during CG. As the jejunum comprises a key component

of the gastrointestinal tract with important roles in digestion and absorption of nutrients, alter-

ations in the expression of such genes was not entirely unexpected. Indeed previous investiga-

tions into the effect of dietary restriction and subsequent re-alimentation in another primary

metabolic tissue, the liver, have also reported alterations in the expression of genes associated

with protein, lipid and carbohydrate metabolism [8, 21]. At the end of Period 1 in the current

jejunal epithelial study, two genes, ANPEP and PGA3, which are both involved in digestive

processes were down-regulated in RES animals compared to ADLIB animals. In the small

intestine the aminopeptidase, ANPEP, functions in the final digestion of peptides generated

from hydrolysis of proteins by gastric and pancreatic proteases [22]. Similarly this gene was

also down-regulated in hepatic tissue in the same animals used in the current study [8]. PGA3

Table 2. Genes differentially expressed in jejunal epithelial following a period of re-alimentation induced compensatory growth (Period 2) relative to following a

period of dietary restriction (Period 1).

Gene ID Gene name Fold change1

ADIRF Adipogenesis regulatory factor -3.2

ANXA10 Annexin A10 3.9

ASNS Asparagine synthetase (glutamine-hydrolyzing) -2.4

CMA1 Chymase 1, mast cell -3.1

DAPL1 Death associated protein-like 1 6.6

DDAH1 Dimethylarginine dimethylaminohydrolase 1 2.3

DNAH2 Dynein, axonemal, heavy chain 2 2.6

EFR3B EFR3 homolog B (S. cerevisiae) 2.3

GCNT3 Glucosaminyl (N-acetyl) transferase 3, mucin type 8.9

GSTA1 Glutathione S-transferase alpha 1 16.7

HERPUD1 Homocysteine-inducible, endoplasmic reticulum stress-inducible, ubiquitin-like domain member 1 -1.7

IL17RB Interleukin 17 receptor B -1.9

INSIG1 Insulin induced gene 1 2.4

IRG1 Immunoresponsive 1 homolog (mouse) 3.0

LRRC17 Leucine rich repeat containing 17 -2.9

LTC4S Leukotriene C4 synthase -2.3

LTF Lactotransferrin 2.9

MAP1LC3C Microtubule-associated protein 1 light chain 3 gamma -2.9

PFKFB3 6-phosphofructo-2-kinase/fructose-2,6-biphosphatase 3 2.2

PGA3 Pepsinogen-3 4.9

PLP1 Proteolipid protein 1 -2.8

PRLR Prolactin receptor 2.1

PSAT1 Phosphoserine aminotransferase 1 -2.6

S100A2 S100 calcium binding protein A2 5.1

SCG2 Secretogranin II -3.2

SDS Serine dehydratase 4.8

SDSL Serine dehydratase-like 3.1

SLAMF7 SLAM family member 7 -1.9

TFF2 Trefoil factor 2 18

TNFRSF11B Tumor necrosis factor receptor superfamily, member 11b 2.1

1Fold changes are within the RES treatment group in compensating animals compared with restricted fed animals.

https://doi.org/10.1371/journal.pone.0194445.t002
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codes for the inactive precursor of pepsinogen, which is released by the gastric chief cells in the

stomach and functions in the further degradation of food into peptides [23]. During the pro-

cess of digestion, these enzymes, each of which is specialised in severing links between particu-

lar types of amino acids, collaborate to break down dietary proteins into their components,

which can be readily absorbed by the intestinal lining [24]. Down-regulation of both of these

digestive genes suggests a lower requirement for digestive processes in jejunal epithelial of RES

animals during Period 1, which may be reflective of the lowered feed intake of these animals

during that time [6].

Fig 1. Differentially expressed genes as a consequence of dietary restriction (RES v ADLIB at the end of Period 1) classified according to molecular and cellular

function. The bars indicate the likelihood [-log (P value)] that the specific function was affected by dietary restriction compared with others represented in the list of

differentially expressed genes.

https://doi.org/10.1371/journal.pone.0194445.g001
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As mentioned previously, dietary restriction and subsequent re-alimentation have been

shown to cause differential expression of genes involved in metabolism [8, 21]. Indeed, alter-

ations in the expression of metabolism genes were also evident in jejunal epithelium in the cur-

rent study. Following a period of differential feeding, lower expression of INSIG1 and SDS
which encode proteins involved in regulating cholesterol biosynthesis and serine and glycine

Fig 2. Differentially expressed genes as a consequence of compensatory growth (RES Period 1 v RES Period 2) classified according to molecular and cellular

function. The bars indicate the likelihood [-log (P value)] that the specific function was affected by dietary restriction compared with others represented in the list of

differentially expressed genes.

https://doi.org/10.1371/journal.pone.0194445.g002
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metabolism respectively [25, 26] was evident in RES compared to ADLIB animals. INSIG1
expression was also reported to be down-regulated in skeletal muscle tissue of cattle undergoing

a period of dietary restriction [7]. Lower systemic glucose and consequently insulin following

dietary restriction is well described for cattle [18, 27–29]. Consequently, as insulin concentra-

tions regulate INSIG1 expression, down-regulation of this gene during dietary restriction may

have been reflective of the lowered systemic glucose and insulin concentrations observed [18].

The effect of insulin concentrations on this gene in relation to dietary restriction and CG are

further established through up-regulation of this gene in hepatic tissue during re-alimentation

induced CG [8, 21]. The primary role of SDS is in the metabolism of serine and glycine, con-

comitant with the production of pyruvate [26]. SDS has previously been reported to be affected

by dietary restriction and subsequent re-alimentation, with lower and greater expression of this

gene evident in skeletal muscle following a period of dietary restriction and subsequent re-ali-

mentation, respectively [7]. Again down-regulation of these genes may have reflected a lowered

requirement for metabolic processes in this tissue in response to a restricted dietary regimen.

In addition to its functionality in digestive and metabolic processes the jejunum is also a

primary site for the absorption of digested nutrients across the intestinal wall for uptake and

further metabolism in the liver [30]. At the end of Period 1, up-regulation of two genes coding

for solute-like carrier amino acid transporters, namely SLC1A5 and SLC7A5 was apparent. The

jejunum has previously been identified as the major site of amino acid and peptide absorption

within the small intestine [30, 31]. The greater expression of SLC1A5 and SLC7A5 observed in

the current study may reflect an enhanced requirement for the uptake of amino acids and a

greater utilisation of diet derived nutrients during dietary restriction.

In the current study a period of dietary restriction was associated with down-regulation of

genes involved in metabolism and digestion. Conversely, however, during re-alimentation

DEGs involved in metabolism and digestion were subsequently up-regulated. For example

during re-alimentation genes involved in metabolism including PGA3, PFKB3, SDS and SDSL
were up-regulated in animals undergoing CG relative to that observed during dietary restric-

tion (RES Period 2 compared to RES Period 1). PFKFB3 codes for an enzyme involved in gly-

colysis [32], whereas SDS and SDSL both encode genes involved in serine and glycine

metabolism. Consistent with this, Connor et al. [21] and Keogh et al. [8] both observed greater

expression of genes involved in metabolism during re-alimentation induced CG in hepatic tis-

sue. Greater expression of metabolism genes during Period 2 occurred with a greater dietary

intake in the animals undergoing re-alimentation induced CG [6] which may have reflected a

greater requirement for metabolic processes concomitant with greater dietary intake in jejunal

epithelial during this time. However, further studies are required to assess the metabolic state

of the metabolic organs in response to both dietary restriction and CG.

Cellular growth and differentiation

Intestinal villi have previously been shown to be responsive to plane of nutrition, with alter-

ations in villi size apparent under conditions of nutrient restriction as well as in response to

subsequent re-alimentation [16, 33]. Indeed, Sun et al. [15] observed that jejunal villus height

and width were smaller in goats that had been fed a restricted diet for 48 days, compared to

those that had not been restricted. Following a subsequent period of re-alimentation induced

CG (63 days) there was no difference in jejunal villus height or width between treatment

groups [15], further establishing the role of intestinal morphology in response to plane of

nutrition. Similarly in the current study, although physical alterations in intestinal villi were

not assessed, down-regulation of genes involved in cellular growth and differentiation was

apparent following a period of dietary restriction. Effects of dietary restriction and subsequent
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re-alimentation on the expression of genes involved in cellular growth and differentiation have

previously been reported in the literature, namely in hepatic tissue [8, 21] and also skeletal mus-

cle tissue [34, 35]. In the current study with jejunal epithelial, ANXA10, which encodes a mem-

ber of the annexin family which are involved in the regulation of cellular growth [36]; DAPL1,

which is involved in the early stages of epithelial differentiation [37]; and S100A2which encodes

a member of the S100 family of proteins which are involved in the regulation of both cell cycle

progression and differentiation [38, 39] were all down-regulated at the end of Period 1 in RES

animals compared to ADLIB animals. Down-regulation of these genes at the end of Period 1

suggests a reduction in cellular growth or division processes in jejunal epithelial following a

period of differential feeding. Moreover, a SNP in the ANXA10 gene has previously been shown

to be associated with feed efficiency in Nellore cattle [40]. Additionally, in the current study,

greater expression of ASNS was also apparent at the end of Period 1. This gene has previously

been shown to be capable of blocking progression through the G1 phase of the cell cycle and

inhibiting cellular proliferation [41]. Thus, greater expression of this gene implies an inhibition

of cellular division following a period of dietary restriction in RES animals at the end of Period

1. Greater expression of ASNS was also apparent in mice following a period of protein restric-

tion [42], as well as in the hepatic tissue of the same cattle used here during dietary restriction

[8]. Moreover, differential expression of ASNS was also evident in skeletal muscle tissue in

response to both dietary restriction and subsequent re-alimentation in the data of Keogh et al.

[7]. Lower expression of the transcriptional elongation factor, ELL3 was also evident in jejunal

epithelia at the end of Period 1. Elongation factors function to increase the catalytic rate of RNA

polymerase II transcription by suppressing transient pausing by the polymerase at multiple sites

along the DNA strand [43]. These apparent alterations to growth and cellular division processes

in jejunal epithelium may be due to alterations in the overall metabolic activity or workload

within the gastrointestinal tract as a consequence of a lowered nutrient intake. Alternatively,

such reductions in cellular growth and division may be due to a requirement to maintain cellu-

lar metabolic homeostasis rather than direct diet derived nutrient energy intake towards cellular

growth and proliferation during a period of dietary restriction.

During re-alimentation, up-regulated growth processes in jejunal epithelium may have

contributed to CG in these cells. This was apparent through the subsequent up-regulation of

S100A2 and LTF, which function in the regulation of cellular growth and differentiation [44]

during re-alimentation. Greater expression of genes involved in cellular division and prolifer-

ative processes has also previously been identified as a contributory factor towards the expres-

sion of CG in cattle [8, 21]. Indeed, more specifically, greater expression of S100A2was also

apparent in skeletal muscle tissue during re-alimentation induced CG [7]. Moreover, Levesque

et al. [16] and Sun et al. [15] both reported an increase in jejunal villus height during re-ali-

mentation induced CG in pigs and goats, respectively, further underpinning greater cellular

growth and proliferation in intestinal tissue during CG. Indeed, Levesque et al. [16] postulated

that the increase in villus height during re-alimentation may allow for an improvement in

nutrient digestibility and ultimately may be contributing to the occurrence of CG through an

improvement in digestive capability. Additionally, greater numbers of villi or increased villi

height may lead to greater surface area which would increase absorptive capacity of the jeju-

num, ultimately contributing to greater utilisation of dietary intake and improved feed effi-

ciency which is characteristic of CG.

Immune function and cellular detoxification

Reports in the literature on calorie restriction in species including mice, rats and humans have

described effects on the immune system, most notably an improved immune function
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following a period of dietary restriction [45–49]. Moderate dietary restriction can affect sur-

vival rates of laboratory animals by reducing cellular division and delaying the aging process,

which can consequently affect the immune system [50]. Indeed, Pahlavani [50] reported a

superior immunological status in rodents that had been offered a restricted diet compared to

that of non-restricted rodents. This effect of diet restriction on the immune system may lead to

a more active and prominent immune response for the organism which may be advantageous

should there be any threat of pathogens or infections to the organism. Indeed in the current

study, at the end of a period of dietary restriction, CTSW, which codes for a cysteine proteinase

that functions in regulating T-cell cytolytic activity [51] was up-regulated in RES compared to

ADLIB animals. However more prominent evidence for an effect of dietary restriction on the

immune system was apparent through genes differentially expressed in animals undergoing

re-alimentation induced CG relative to those at the end of a period of dietary restriction. In

this comparison, differential expression of immune related genes included up-regulation of

IRG1 and down-regulation of IL17RB, LTC4S, MAP1LC3C, SLAM7 and CMA1 which was evi-

dent in cattle undergoing re-alimentation induced CG compared to those fed restrictedly at

the end of Period 1 (RES Period 2 relative to RES Period 1). Immune genes identified as differ-

entially expressed reflected different types of immune response including inflammation and

autophagy. For example, IRG1 codes for a protein involved in the inhibition of the inflamma-

tory response, and acts as a negative regulator of the Toll-like receptor-mediated inflammatory

response [52]. IL17RB codes for a cytokine receptor [53]. LTC4S codes for a mediator of

inflammation [54]. SLAMF7 belongs to a family of signalling lymphocytic activation molecule

receptors which are cell specific receptors with critical roles in normal immune regulation

[55]. MAP1LC3C codes for a protein that plays a role in antibacterial autophagy [56], and

CMA1 codes for a serine proteinase which is expressed in mast cells and functions in the deg-

radation of the extracellular matrix [57]. Elsasser et al. [58] suggested that the immune system

may be involved in nutrient partitioning with up-regulation of immune genes causing activa-

tion of tissue mobilisation during dietary restriction with the corollary resulting in more

energy to be partitioned towards growth during periods of greater dietary consumption. Thus,

down-regulation of immune-related genes during CG may be an inherent adaptation in

response to re-alimentation in order to allow more energy to be partitioned towards growth,

as suggested by Elsasser et al. [58]. Overall, these results suggest that dietary restriction in cattle

can elicit a superior immunological status as previously described in other species which may

prevent any potential pathological threats to the animal as well as potentially allowing for

more dietary derived energy to be partitioned towards growth during re-alimentation.

At the end of Period 2, only one gene was differentially expressed between RES and ADLIB

animals, namely GSTA1. This gene codes for a glutathione S-tranferase which is involved in

cellular detoxification and was up-regulated in RES relative to ADLIB animals following a

period of re-alimentation. Additionally, TFF2 and DDAH1 were also up-regulated in jejunal

tissue of cattle undergoing CG (RES Period 2 relative to RES Period 1). TFF2 codes for a pro-

tein involved in the protection of the intestinal mucosa [59] whilst DDAH1 and GSTA1 both

function in cellular detoxification [60, 61]. Up-regulation of genes coding for functions such

as detoxification and cellular protection suggests a greater requirement for detoxification

during CG and greater feed intake. Greater expression of glutathione s-transferase genes has

been reported previously during re-alimentation following a prior dietary restriction, in skel-

etal muscle tissue (GSTK1, [7]) and hepatic tissue (GSTA1, GSTZ1, GSTM4, [21]). A similar

response was also reported in skeletal muscle where during early re-alimentation greater

expression of genes coding for FoxO proteins was evident [62]. Up-regulation of genes

involved in cellular protection and detoxification may be an acquired adaptive response to

increased nutrient intake during re-alimentation. For example a sudden increase in nutrient
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intake may lead to an associated increase in the rate of oxidative metabolism, which may in

turn result in the production of reactive oxygen species, potentially detrimental to cellular

survival [63]. Thus, there is potential that up-regulation of genes associated with protective

or detoxification roles may be necessary to preserve a homeostatic state within the jejunal

epithelium during periods of greater feed intake. This has also been reported during

instances of greater states of cellular nutrient abundance and associated stress in vitro in

mammalian cells [64]. Overall, differential expression of genes involved in immunity and

cellular detoxification suggest a greater immune response during dietary restriction and a

subsequent requirement to maintain cellular homeostasis and survival during subsequent re-

alimentation and CG.

Conclusions

Following a period of dietary restriction, genes associated with metabolism and digestion were

down-regulated in response to reduced dietary intake. However, subsequent to this when

these cattle were undergoing re-alimentation and CG; genes associated with these processes

were observed to be up-regulated. Indeed, greater nutrient intake during re-alimentation was

also associated with increased expression of genes involved in cellular protection and detoxifi-

cation. Reduced and then subsequently increased dietary intake and resultant gastrointestinal

processing may have led to alterations in jejunal villi numbers or structure. We observed evi-

dence for this in the current study through lower expression of genes involved in growth and

cellular division following a period of dietary restriction with the opposite effect evident during

re-alimentation. Indeed greater numbers of jejunal villi may result in an increase in the surface

area for absorption and thus facilitate an increase in feed efficiency, which is typically observed

in animals undergoing CG. Finally, results from this study suggest that a moderate dietary

restriction and subsequent CG may affect the immune response, which may reflect an acquired

adaptive response in order to cope with changes in nutrient abundance and associated tissue

mobilisation and deposition. This study provides an insight into the contribution of the jeju-

num, a key segment of the digestive machinery of the gastrointestinal tract. However, given

that only one gene was differentially expressed by day 55 of re-alimentation, we must conclude

that differential gene expression in this tissue is unlikely to contribute long-term to the CG

phenomenon in cattle.
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