290 research outputs found

    Dehairing Australian alpaca fibres with a cashmere dehairing machine

    Full text link
    Many classes of alpaca fibres contain a certain amount of coarse fibres, which are strong and stiff, and cause discomfort to the end users of the alpaca fibre products. It is therefore desirable to separate the coarse fibres from the fine alpaca fibres. This paper reports trial results on alpaca dehairing using a cashmere dehairing machine. The diameters of alpaca fleece, dehaired alpaca fibres and removed alpaca fibres were analysed, and the fibre lengths before and after dehairing have been compared. The results indicate that it is feasible to dehair alpaca fibres using a cashmere dehairing facility. The dehaired alpaca fibres are cleaner, bulkier and softer, with around 1.5 &mu;m reduction in average fibre diameter, but the dehairing process shortens the dehaired fibre length considerably. The dehairing effectiveness of coarse fibre removal using the cashmere dehairing technology has also been discussed in this paper. <br /

    Ultrafast transient absorption spectroscopy: principles and application to photosynthetic systems

    Get PDF
    The photophysical and photochemical reactions, after light absorption by a photosynthetic pigment–protein complex, are among the fastest events in biology, taking place on timescales ranging from tens of femtoseconds to a few nanoseconds. The advent of ultrafast laser systems that produce pulses with femtosecond duration opened up a new area of research and enabled investigation of these photophysical and photochemical reactions in real time. Here, we provide a basic description of the ultrafast transient absorption technique, the laser and wavelength-conversion equipment, the transient absorption setup, and the collection of transient absorption data. Recent applications of ultrafast transient absorption spectroscopy on systems with increasing degree of complexity, from biomimetic light-harvesting systems to natural light-harvesting antennas, are presented. In particular, we will discuss, in this educational review, how a molecular understanding of the light-harvesting and photoprotective functions of carotenoids in photosynthesis is accomplished through the application of ultrafast transient absorption spectroscopy

    Parent Skills Training: Expanding School-Based Services for Adolescent Mothers

    Full text link
    This article reports the results of a collaborative intervention effort between a teen-parent program and a school of social work Social work faculty and students participated in a program aimed at strengthening parental skills and the utilization of social support among adolescent mothers who were enrolled in a special high school program. The results of this evaluation study point to additional factors, such as empathy training and stress management, which need to be included in a comprehensive service-delivery program for school-age mothers.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/68359/2/10.1177_104973159200200203.pd

    Energy transfer, excited-state deactivation, and exciplex formation in artificial caroteno-phthalocyanine light-harvesting antennas

    Get PDF
    We present results from transient absorption spectroscopy on a series of artificial light-harvesting dyads made up of a zinc phthalocyanine (Pc) covalently linked to carotenoids with 9, 10, or 11 conjugated carbon-carbon double bonds, referred to as dyads 1, 2, and 3, respectively. We assessed the energy transfer and excited-state deactivation pathways following excitation of the strongly allowed carotenoid 82 state as a function of the conjugation length. The 82 state rapidly relaxes to the S* and Si states. In all systems we detected a new pathway of energy deactivation within the carotenoid manifold in which the S* state acts as an intermediate state in the

    BLUF Domain Function Does Not Require a Metastable Radical Intermediate State

    Get PDF
    BLUF (blue light using flavin) domain proteins are an important family of blue light-sensing proteins which control a wide variety of functions in cells. The primary light-activated step in the BLUF domain is not yet established. A number of experimental and theoretical studies points to a role for photoinduced electron transfer (PET) between a highly conserved tyrosine and the flavin chromophore to form a radical intermediate state. Here we investigate the role of PET in three different BLUF proteins, using ultrafast broadband transient infrared spectroscopy. We characterize and identify infrared active marker modes for excited and ground state species and use them to record photochemical dynamics in the proteins. We also generate mutants which unambiguously show PET and, through isotope labeling of the protein and the chromophore, are able to assign modes characteristic of both flavin and protein radical states. We find that these radical intermediates are not observed in two of the three BLUF domains studied, casting doubt on the importance of the formation of a population of radical intermediates in the BLUF photocycle. Further, unnatural amino acid mutagenesis is used to replace the conserved tyrosine with fluorotyrosines, thus modifying the driving force for the proposed electron transfer reaction; the rate changes observed are also not consistent with a PET mechanism. Thus, while intermediates of PET reactions can be observed in BLUF proteins they are not correlated with photoactivity, suggesting that radical intermediates are not central to their operation. Alternative nonradical pathways including a keto–enol tautomerization induced by electronic excitation of the flavin ring are considered

    The Role of the Endocannabinoids 2-AG and Anandamide in Clinical Symptoms and Treatment Outcome in Veterans with PTSD

    Get PDF
    Background: Although current treatments for Post-Traumatic Stress Disorder (PTSD) in war veterans are effective, unfortunately 30–50% still do not benefit from these treatments. Trauma-focused therapies, eg exposure therapy, are primarily based on extinction processes in which the endocannabinoid system (ECS) plays a significant role. Therefore, it can be hypothesized that poor treatment response on trauma-focused therapy due to extinction deficits may be associated with a poorly functioning ECS. The present study examined whether the endocannabinoids anandamide (AEA) and 2-arachidonylglycerol (2-AG) are associated with post-treatment symptom reduction. Methods: Blood plasma levels of AEA and 2-AG were determined in war veterans with a PTSD diagnosis (n = 54) and combat controls (n = 26) before and after a 6–8 month interval. During this period veterans with PTSD received trauma-focused therapy (eg cognitive behavioral therapy with exposure or eye-movement desensitization and reprocessing). Clinical symptoms were assessed before and after therapy with the Clinician Administered PTSD Scale (CAPS), State-Trait Anxiety Inventory (STAI) and Mood and Anxiety Symptom Questionnaire (MASQ). Results: Regression analysis demonstrated that pretreatment endocannabinoid levels were not predictive of PTSD symptom reduction. Additionally, baseline endocannabinoid levels did not differ between either PTSD and combat controls or between combat controls, treatment responders, and non-responders. Only cortisol levels significantly decreased over time from pre- to posttreatment (p =.041). Endocannabinoid levels were significantly lower in individuals who reported cannabis use during their lifetime, independent of PTSD diagnosis. Furthermore, correlation analysis revealed that pretreatment 2-AG levels in PTSD were positively correlated with anxious arousal (r =.354, p =.015) and negatively with avoidance symptoms (r = -.271, p =.048). Both posttreatment AEA and 2-AG were positively correlated with trait anxiety (AEA r =.459, p =.003; 2-AG r =.423, p =.006), anxious arousal (AEA r =.351, p =.024; 2-AG r =.311, p =.048) and general distress depression symptoms (AEA r =.414, p =.007; 2-AG r =.374, p =.016). Conclusion: Since endocannabinoids are mainly generated ‘on demand’, future work could benefit by investigating endocannabinoid circulation under both baseline and stressful conditions. In line with previous research cannabis use was associated with lower endocannabinoid levels. The correlation analysis between pre- and posttreatment endocannabinoid levels and pre- and posttreatment clinical symptomatology were exploratory analysis and should be replicated in future research

    Excitons in a Photosynthetic Light-Harvesting System: A Combined Molecular Dynamics/Quantum Chemistry and Polaron Model Study

    Get PDF
    The dynamics of pigment-pigment and pigment-protein interactions in light-harvesting complexes is studied with a novel approach which combines molecular dynamics (MD) simulations with quantum chemistry (QC) calculations. The MD simulations of an LH-II complex, solvated and embedded in a lipid bilayer at physiological conditions (with total system size of 87,055 atoms) revealed a pathway of a water molecule into the B800 binding site, as well as increased dimerization within the B850 BChl ring, as compared to the dimerization found for the crystal structure. The fluctuations of pigment (B850 BChl) excitation energies, as a function of time, were determined via ab initio QC calculations based on the geometries that emerged from the MD simulations. From the results of these calculations we constructed a time-dependent Hamiltonian of the B850 exciton system from which we determined the linear absorption spectrum. Finally, a polaron model is introduced to describe quantum mechanically both the excitonic and vibrational (phonon) degrees of freedom. The exciton-phonon coupling that enters into the polaron model, and the corresponding phonon spectral function are derived from the MD/QC simulations. It is demonstrated that, in the framework of the polaron model, the absorption spectrum of the B850 excitons can be calculated from the autocorrelation function of the excitation energies of individual BChls, which is readily available from the combined MD/QC simulations. The obtained result is in good agreement with the experimentally measured absorption spectrum.Comment: REVTeX3.1, 23 pages, 13 (EPS) figures included. A high quality PDF file of the paper is available at http://www.ks.uiuc.edu/Publications/Papers/PDF/DAMJ2001/DAMJ2001.pd

    Intrusive Traumatic Re-Experiencing Domain (ITRED) – Functional Connectivity Feature Classification by the ENIGMA PTSD Consortium

    Get PDF
    Background Intrusive Traumatic Re-Experiencing Domain (ITRED) was recently introduced as a novel perspective on posttraumatic psychopathology, proposing to focus research of posttraumatic stress disorder (PTSD) on the unique symptoms of intrusive and involuntary re-experiencing of the trauma, namely, intrusive memories, nightmares, and flashbacks. The aim of the present study was to explore ITRED from a neural network connectivity perspective. Methods Data was collected from nine sites taking part in the ENIGMA-PTSD Consortium (n=584) and included itemized PTSD symptoms scores and resting-state functional connectivity (rsFC) data. We assessed the utility of rsFC in classifying PTSD, ITRED-only (no PTSD diagnosis), and Trauma-exposed (TE)-only (no PTSD or ITRED) groups using a machine learning approach, examining well-known networks implicated in PTSD. Random forest classification model was built on a training set using cross-validation (CV), and the averaged CV model performance for classification was evaluated using area-under-the-curve (AUC). The model was tested using a fully independent portion of the data (test dataset), and the test AUC was evaluated. Results RsFC signatures differentiated TE-only participants from PTSD and from ITRED-only participants at about 60% accuracy. Conversely, rsFC signatures did not differentiate PTSD from ITRED-only individuals (45% accuracy). Common features differentiating TE-only participants from PTSD and from ITRED-only participants mainly involved default mode network-related pathways. Some unique features, such as connectivity within the frontal-parietal network, differentiated TE-only participants from one group (PTSD or ITRED-only), but to a lesser extent from the other. Conclusion Neural network connectivity supports ITRED as a novel neurobiologically-based approach to classifying post-trauma psychopathology
    corecore