13 research outputs found

    A Mathematical Model of Lymphangiogenesis in a Zebrafish Embryo

    Get PDF
    The lymphatic system of a vertebrate is important in health and diseases. We propose a novel mathematical model to elucidate the lymphangiogenic processes in zebrafish embryos. Specifically, we are interested in the period when lymphatic endothelial cells (LECs) exit the posterior cardinal vein and migrate to the horizontal myoseptum of a zebrafish embryo. We wonder whether vascular endothelial growth factor C (VEGFC) is a morphogen and a chemotactic factor for these LECs. The model considers the interstitial flow driving convection, the reactive transport of VEGFC, and the changing dynamics of the extracellular matrix in the embryo. Simulations of the model illustrate that VEGFC behaves very differently in diffusion and convection-dominant scenarios. In the former case, it must bind to the matrix to establish a functional morphogen gradient. In the latter case, the opposite is true and the pressure field is the key determinant of what VEGFC may do to the LECs. Degradation of collagen I, a matrix component, by matrix metallopeptidase 2 controls the spatiotemporal dynamics of VEGFC. It controls whether diffusion or convection is dominant in the embryo; it can create channels of abundant VEGFC and scarce collagen I to facilitate lymphangiogenesis; when collagen I is insufficient, VEGFC cannot influence the LECs at all. We predict that VEGFC is a morphogen for the migrating LECs, but it is not a chemotactic factor for them

    Can VEGFC Form Turing Patterns in the Zebrafish Embyro?

    Get PDF
    This paper is concerned with a late stage of lymphangiogenesis in the trunk of the zebrafish embryo. At 48 hours pos-fertilisation (HPF), a pool of parachordal lymphangioblasts (PLs) lies in the horizontal myoseptum. Between 48 and 168 HPF, the PLs spread from the horizontal myoseptum to form the throacic duct, dorsal longitudinal lymphatic vessel, and parachordal lymphatic vessel. This paper deals wit hthe potential of vascular endothelial growth factor C (VEGFC) to guide the differentiation of PLs into the mature lymphatic endothelial cells that form the vessels. We built a mathematical model to describe the biochemical interactions between VEGFC, collagen I, and matrix metalloproteinase 2 (MMP2). We also carried out a linear stability analysis of the model and computer simulations of VEGFC patterning. The results suggest that VEGFC can form Turing patterns due to its relations with MMP2 and collagen I, but the zebrafish embryo needs a separate control mechanism to create the right physiological conditions. Futhermore, this control mechanism must ensure that the VEGFC patterns are useful for lymphangiogenesis: stationary, steep gradients, and resonably fast forming. Generally, the combination of a patterning species, a matrix protein, and a remodelly species is a new patterning mechanism

    Can VEGFC Form Turing Patterns in the Zebrafish Embyro?

    Get PDF
    This paper is concerned with a late stage of lymphangiogenesis in the trunk of the zebrafish embryo. At 48 hours pos-fertilisation (HPF), a pool of parachordal lymphangioblasts (PLs) lies in the horizontal myoseptum. Between 48 and 168 HPF, the PLs spread from the horizontal myoseptum to form the throacic duct, dorsal longitudinal lymphatic vessel, and parachordal lymphatic vessel. This paper deals wit hthe potential of vascular endothelial growth factor C (VEGFC) to guide the differentiation of PLs into the mature lymphatic endothelial cells that form the vessels. We built a mathematical model to describe the biochemical interactions between VEGFC, collagen I, and matrix metalloproteinase 2 (MMP2). We also carried out a linear stability analysis of the model and computer simulations of VEGFC patterning. The results suggest that VEGFC can form Turing patterns due to its relations with MMP2 and collagen I, but the zebrafish embryo needs a separate control mechanism to create the right physiological conditions. Futhermore, this control mechanism must ensure that the VEGFC patterns are useful for lymphangiogenesis: stationary, steep gradients, and resonably fast forming. Generally, the combination of a patterning species, a matrix protein, and a remodelly species is a new patterning mechanism

    Mathematical Model of Clonal Evolution Proposes a Personalised Multi-Modal Therapy for High-Risk Neuroblastoma

    Get PDF
    Neuroblastoma is the most common extra-cranial solid tumour in children. Despite multi-modal therapy, over half of the high-risk patients will succumb. One contributing factor is the one-size-fits-all nature of multi-modal therapy. For example, during the first step (induction chemotherapy), the standard regimen (rapid COJEC) administers fixed doses of chemotherapeutic agents in eight two-week cycles. Perhaps because of differences in resistance, this standard regimen results in highly heterogeneous outcomes in different tumours. In this study, we formulated a mathematical model comprising ordinary differential equations. The equations describe the clonal evolution within a neuroblastoma tumour being treated with vincristine and cyclophosphamide, which are used in the rapid COJEC regimen, including genetically conferred and phenotypic drug resistance. The equations also describe the agents’ pharmacokinetics. We devised an optimisation algorithm to find the best chemotherapy schedules for tumours with different pre-treatment clonal compositions. The optimised chemotherapy schedules exploit the cytotoxic difference between the two drugs and intra-tumoural clonal competition to shrink the tumours as much as possible during induction chemotherapy and before surgical removal. They indicate that induction chemotherapy can be improved by finding and using personalised schedules. More broadly, we propose that the overall multi-modal therapy can be enhanced by employing targeted therapies against the mutations and oncogenic pathways enriched and activated by the chemotherapeutic agents. To translate the proposed personalised multi-modal therapy into clinical use, patient-specific model calibration and treatment optimisation are necessary. This entails a decision support system informed by emerging medical technologies such as multi-region sequencing and liquid biopsies. The results and tools presented in this paper could be the foundation of this decision support system

    The promise of organ and tissue preservation to transform medicine

    No full text
    The ability to replace organs and tissues on demand could save or improve millions of lives each year globally and create public health benefits on par with curing cancer. Unmet needs for organ and tissue preservation place enormous logistical limitations on transplantation, regenerative medicine, drug discovery, and a variety of rapidly advancing areas spanning biomedicine. A growing coalition of researchers, clinicians, advocacy organizations, academic institutions, and other stakeholders has assembled to address the unmet need for preservation advances, outlining remaining challenges and identifying areas of underinvestment and untapped opportunities. Meanwhile, recent discoveries provide proofs of principle for breakthroughs in a family of research areas surrounding biopreservation. These developments indicate that a new paradigm, integrating multiple existing preservation approaches and new technologies that have flourished in the past 10 years, could transform preservation research. Capitalizing on these opportunities will require engagement across many research areas and stakeholder groups. A coordinated effort is needed to expedite preservation advances that can transform several areas of medicine and medical science
    corecore