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Abstract The lymphatic system of a vertebrate is important in health and diseases.
We propose a novel mathematical model to elucidate the lymphangiogenic processes
in zebrafish embryos. Specifically, we are interested in the period when lymphatic
endothelial cells (LECs) exit the posterior cardinal vein and migrate to the horizontal
myoseptum of a zebrafish embryo. We wonder whether vascular endothelial growth
factor C (VEGFC) is amorphogen and a chemotactic factor for these LECs. Themodel
considers the interstitial flow driving convection, the reactive transport of VEGFC, and
the changing dynamics of the extracellular matrix in the embryo. Simulations of the
model illustrate that VEGFC behaves very differently in diffusion and convection-
dominant scenarios. In the former case, it must bind to the matrix to establish a
functional morphogen gradient. In the latter case, the opposite is true and the pressure
field is the key determinant of what VEGFC may do to the LECs. Degradation of col-
lagen I, a matrix component, by matrix metallopeptidase 2 controls the spatiotemporal
dynamics of VEGFC. It controls whether diffusion or convection is dominant in the
embryo; it can create channels of abundant VEGFC and scarce collagen I to facili-
tate lymphangiogenesis; when collagen I is insufficient, VEGFC cannot influence the
LECs at all. We predict that VEGFC is a morphogen for the migrating LECs, but it is
not a chemotactic factor for them.
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1 Introduction

The lymphatic system of a vertebrate plays many roles in health and in diseases. Most
importantly, it drains the interstitial fluid of its tissues back to the blood vasculature,
thereby maintaining tissue homoeostasis and absorbing intestinal lipids (Margaris and
Black 2012; Schulte-Merker et al. 2011). Furthermore, various immune cells reside in
the lymph nodes distributed throughout the lymphatic system; they filter the circulating
lymph (Margaris and Black 2012). If the lymphatic system malfunctions, a medical
condition called lymphoedema ensues; it is characterised by swelling and pain due to
a build-up of interstitial fluid (Margaris and Black 2012).

In a vertebrate, lymphatic vessels are present inmost organs except avascular tissues
like cartilage (Schulte-Merker et al. 2011; Louveau et al. 2015). Like Roose and Tabor
(2013), we will classify them into primary and secondary lymphatics. Margaris and
Black (2012) is a detailed review of both categories. The primary lymphatics, also
called initial lymphatics, are the entry points of a lymphatic system. They are lined by
a monolayer of nonfenestrated lymphatic endothelial cells (LECs). They drain their
surrounding tissues of excessive fluid passively, a process driven by fluctuations in
their interstitial pressures. The resulting lymph is delivered into the larger secondary
lymphatics. Also known as collecting ducts, they have walls that contain smooth
muscle cells to propel lymphatic circulation by contractions; the muscles, arteries,
and organs nearby also add to the propelling forces. The secondary lymphatics drain
into various veins, thereby returning lymph to the vertebrate’s blood vasculature.

How such an important and complex structure develops is incompletely under-
stood. In this paper, we will investigate lymphangiogenesis in zebrafish (Danio rerio)
embryos. Lymphangiogenesis is the development and proliferation of new lymphat-
ics by sprouting from veins and/or any pre-existing lymphatic structures (Ji 2006).
Zebrafish is a model organism widely used for studying vascular development (Gore
et al. 2012). According to Florence Sabin’s conceptual model (Sabin 1902), the lym-
phatic vasculature of a vertebrate stems from the blood vasculature. This mechanism
is generally accepted by the scientific community nowadays (Schulte-Merker et al.
2011). In zebrafish, various venous origins contribute the precursor cells which will
form the trunk lymphatics, the facial lymphatics, the lateral lymphatics, and the intesti-
nal lymphatics (Koltowska et al. 2013). Our focus is on the trunk lymphatics. The
developmental steps which generate the lymphatic vasculature in a zebrafish trunk are
illustrated in Fig. 1 and described as follows.

Within 24h post-fertilisation (HPF), Wnt5b secreted by the endoderm commits the
cells in the ventral wall of the posterior cardinal vein (PCV) to the lymphatic fate; the
resulting LECs will translocate to the dorsal side of the PCV by 30 HPF (Nicenboim
et al. 2015). At 32 HPF, most of the blood vasculature is fully formed, including the
dorsal aorta (DA), the PCV, a set of intersegmental arteries (aISVs), and a pair of
dorsal longitudinal anastomotic vessels (DLAVs) (Koltowska et al. 2013).

At around 36 HPF, 30 pairs of secondary sprouts emerge from the dorsal side
of the PCV and migrate dorsally (van Impel and Schulte-Merker 2014). The LECs
constituting these sprouts only exit the PCV when they are stimulated by the growth
factor VEGFC (Hogan et al. 2009). In mice at least, only the LECs that have exited the
veins can express podoplanin (Koltowska et al. 2013).Althoughpodoplanin is absent in
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Fig. 1 (Color figure online) Developmental steps that generate the lymphatic system in the trunk of a
zebrafish embryo. a–d A slice of the trunk cut in the ventral–dorsal direction, so they depict the develop-
mental events in the anterior–posterior view. This particular slice of the trunk has a pair of intersegmental
arteries (aISVs) and a pair of lymphatic sprouts, one of which fuses with an aISV to from an intersegmental
vein (vISV). There are 30 slices like this one in the trunk. When the parachordal lymphangioblasts (PLs)
reach where the thoracic duct and the dorsal longitudinal lymphatic vessel lie in the ventral–dorsal slice
depicted, they migrate anteriorly and posteriorly to connect with the PLs from the remaining 29 slices
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696 K. Y. Wertheim, T. Roose

zebrafish (Chen et al. 2014), the genetic programmes regulating lymphangiogenesis in
zebrafish andmice are more similar than different, as argued in van Impel and Schulte-
Merker (2014). This leads us to assume that the PCV-derived LECs will change their
gene expression profile after exiting the PCV.

At approximately 48 HPF, half of the secondary sprouts are already fused with
their adjacent aISVs to form a set of intersegmental veins (vISVs); the remaining
sprouts aggregate in a region named horizontal myoseptum, forming a pool of para-
chordal lymphangioblasts (PLs) (van Impel and Schulte-Merker 2014). The horizontal
myoseptum expresses the ligand Cxcl12a which binds to the receptor Cxcr4 expressed
by the LECs constituting the sprouts, thus ensuring the dorsally migrating LECs turn
laterallywhen they reach the horizontalmyoseptum (Cha et al. 2012). Further guidance
cues for the LECs are thought to be provided by the motor neuron axons positioned
along the horizontal myoseptum (Cha et al. 2012). After the LECs form the pool of
PLs, they continue to express Cxcr4; they will migrate both ventrally and dorsally
along their adjacent aISVs which express the ligand Cxcl12b (Cha et al. 2012).

Before 120 HPF, the PLs form the thoracic duct (TD) between the DA and the
PCV, as well as the dorsal longitudinal lymphatic vessel (DLLV) below the DLAVs
(van Impel and Schulte-Merker 2014). These two lymphatic vessels are connected via
a set of intersegmental lymphatic vessels (ISLVs) which are close to the aISVs (van
Impel and Schulte-Merker 2014). At this stage, the PCV expresses Cxcl12a and the
DA expresses Cxcl12b, thus ensuring the ventrally migrating PLs will end up between
the two blood vessels (Cha et al. 2012). Once they reach where the DLLV and TD
should lie in a ventral–dorsal slice, the PLs will migrate anteriorly and posteriorly to
connect with the PLs from the other ventral–dorsal slices in the trunk, thus ensuring
the two lymphatic vessels are continuous.

There are several missing details in this developmental process. The LECs exit
the PCV under the influence of VEGFC. During their dorsal migration, their gene
expression profile probably changes, similar to their counterparts in a mouse embryo.
Although we know that Cxcl12a causes the LECs to aggregate along the horizontal
myoseptum, we do not knowwhat causes them to migrate dorsally instead of ventrally
or laterally from the PCV. Neither do we know what changes their gene expression
profile during migration. In short, we are uncertain about what happens between (b)
and (c) in Fig. 1.

We know that VEGFC promotes survival, proliferation, and migration in LECs
through the PI3K/AKT andRAS/RAF/ERK signalling pathways; the PI3K/AKTpath-
way regulates their migration, while the RAS/RAF/ERK pathway controls lymphatic
fate specification (Mäkinen et al. 2001; Deng et al. 2013). A possibility is that VEGFC
is more than a growth factor for the PCV-derived LECs. It may be a chemotactic factor
and a morphogen too. By chemotactic factor, we mean a chemical which directs the
migrating LECs dorsally to the horizontal myoseptum. By morphogen, we mean a
chemical which provides positional information to the LECs so that they alter their
gene expression after exiting the PCV. In Sect. 2, we will build a mathematical model
of the spatiotemporal dynamics of VEGFC in the trunk of a zebrafish embryo. In
Sect. 3, we will solve the model numerically under different conditions to explore the
aforementioned possibilities. In Sect. 4, we will integrate the simulation results into
answers to our research questions about lymphangiogenesis.
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2 Development of the Mathematical Model

In the following subsection, we will represent a zebrafish’s trunk with a simplified
geometry. Then, we will use Brinkman’s equation to model the interstitial flow in
the trunk. After that, we will use different forms of the reaction–diffusion–convection
equation to model the reactive transport of VEGFC in the interstitial space of the
trunk, as well as the changing composition of the interstitial space itself. We will
complete the model by connecting the composition of the interstitial space to the
interstitial flow. The resulting mathematical model will be a single framework which
integrates these biochemical and biophysical phenomena. Then, we will parametrise,
nondimensionalise, and simplify this mathematical model.

2.1 Geometry

According to van Impel and Schulte-Merker (2014), the blood and lymphatic vascu-
latures in a zebrafish trunk are spatially periodic in the anterior–posterior direction as
defined in Fig. 1. Exceptions are the three sets of intersegmental vessels: the aISVs,
the vISVs, and the ISLVs, which appear at certain points on the anterior–posterior axis
only; they extend in the ventral–dorsal direction as defined in Fig. 1. The secondary
sprouts emerge next to the aISVs, so the three sets of intersegmental vessels coalign
in 30 ventral–dorsal slices of the trunk (Isogai et al. 2003). Two adjacent slices are
about 75 µm apart (Coffindaffer-Wilson et al. 2011b), so they can be considered inde-
pendently. Each slice is similar to the one shown in Fig. 1. We will take advantage of
these features and model one slice only.

However, we will not model the aISVs because our interest is from 36 to 48 HPF,
the period when the PCV-derived lymphatic progenitors migrate to the horizontal
myoseptum and differentiate en route. These events are not dependent on the aISVs
(Bussmann et al. 2010).

There are a pair of DLAVs, but the distance between them is small. Representing
them as two separate tubes requires a high-resolution grid, sowewill model oneDLAV
only and double the flux into this vessel.

Based on the above assumptions, we can build an idealised geometry of the trunk
between 36 and 48 HPF. The geometry is shown in Fig. 2. The LEC is located halfway
between the DA and the PCV. It represents an LEC on its way to the horizontal
myoseptum, but it is stationary in our model. For the purpose of model development,
we will divide the geometry into two domains: the LEC and the interstitial space,
which is the whole geometry minus the LEC. The dimensions of the geometry and its
internal structures are summarised in Table 1.

2.2 Interstitial Flow

Next, we will consider the interstitial flow in the trunk. It is driven by the pressure
differences between the zebrafish’s blood vasculature, interstitial space, and lymphatic
vasculature (Swartz and Fleury 2007). Clearly, our representation of the zebrafish
trunk does not include a lymphatic vasculature. However, the blood circulation in a
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Fig. 2 Idealised geometry of a ventral–dorsal slice of a zebrafish trunk between 36 and 48h post-
fertilisation. This figure shows the idealised geometry in the anterior–posterior view. This slice is one
of the 30 slices with secondary sprouts from the posterior cardinal vein. The empty circles are, from top to
bottom, the dorsal longitudinal anastomotic vessel (DLAV), the dorsal aorta (DA), and the posterior cardinal
vein (PCV). The solid circle is a lymphatic endothelial cell (LEC) which has exited the posterior cardinal
vein; it is halfway between the dorsal aorta and the posterior cardinal vein. The dot in the middle of the
figure indicates the horizontal myoseptum, which is the destination of the LEC. In this study, we consider
the LEC to be stationary

Table 1 Dimensions of the idealised geometry and its internal structures

Quantity measured Time Measurement
(µm)

References

Total height 96 HPF 434 McGee et al. (2012)

Total width 72 HPF 43 Hermans et al. (2010)

PCV diameter 96 HPF 20 Coffindaffer-Wilson et al. (2011b)

DA diameter 96 HPF 12 Coffindaffer-Wilson et al. (2011b)

DLAV diameter 96 HPF 13 Coffindaffer-Wilson et al. (2011b)

PCV-DA distance 96 HPF 51 Coffindaffer-Wilson et al. (2011b)

DA-DLAV distance 96 HPF 151 Coffindaffer-Wilson et al. (2011b)

LEC diameter – 10 Yaniv et al. (2006)

PCV posterior cardinal vein,DA dorsal aorta,DLAV dorsal longitudinal anastomotic vessel, LEC lymphatic
endothelial cell, HPF hours post-fertilisation

zebrafish begins by 30 HPF (Iida et al. 2010), so there is already an interstitial flow
at the beginning of our time frame of interest. We need to incorporate this physical
phenomenon into our mathematical model. On the other hand, we will not consider
the flow’s effects on the LEC in our model trunk. In general, the shear stresses from
a flow can induce intracellular and functional changes in cells (Shi and Tarbell 2011;
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Ng et al. 2004). However, the intracellular details necessary for the calculation of its
mechanical responses are beyond the scope of this tissue-level model.

Our mathematical model of the interstitial flow relies on several assumptions. First,
as in Coffindaffer-Wilson et al. (2011a), we will assume that the DA has the highest
blood pressure in a zebrafish. The images in Coffindaffer-Wilson et al. (2011b) show
that the DA, PCV, and DLAV have diameters comparable to a single cell. It is therefore
reasonable to treat them as leaky capillaries (Jain 1987). The high DA pressure will
force blood plasma into the interstitial space by paracellular transport, making the DA
the inlet for fluid flow in our model. Second, we will assume a constant density for
the resulting interstitial fluid. Third, we will only model the interstitial flow in the
interstitial space because the LEC is separated by its cell membrane. Fourth, we will
assume there are no sources or sinks of fluid in the interstitial space. Fifth, we will
use a constant permeability for all three blood vessels because they are all assumed
to behave like one-cell-thick capillaries. Sixth, we will ignore the pulsating nature of
blood flow in this mathematical model. Finally, we will assume that the interstitial
flow is at a steady state.

The interstitial space consists of the aforementioned interstitial fluid and an extracel-
lular matrix (ECM), the latter of which is a porous medium. Therefore, the interstitial
flow can be described by Darcy’s law. However, Darcy’s law does not permit the
use of no-slip boundary conditions on the surfaces of internal structures, such as the
blood vessels and the LEC in our geometry. More significantly, Darcy’s law assumes
a homogeneous medium. In the next subsection, we will expand the model to include
the remodelling events which degrade the ECM wherein channels may form. Darcy’s
law cannot model these regions accurately. Brinkman’s equation can overcome both
limitations. Using P (mmHg) to represent the pressure field in the interstitial space,
μ (cP) the dynamic viscosity of the interstitial fluid, κ (cm2) the specific hydraulic
conductivity of the ECM, and u (µm/s) the interstitial fluid velocity, we can write
Brinkman’s equation as

∇P = −μ

κ
u + μ∇2u. (1)

There are two dependent variables in Eq. (1): P and u, so we need another equation
to define the flow problem. Because the interstitial fluid has a constant density and
there are no sources or sinks of it in the interstitial space, conservation of mass is given
by

∇ · u = 0. (2)

To solve the flow problem, we need some boundary conditions. The fluxes out of
the DA and into the PCV and the DLAV can bemodelled by an equation describing the
permeability of a vessel (Jain 1987). It is a linear relation between a transvascular flux
and the transvascular pressure drop driving it.Wewill define x as the position vector in
our geometry and n as a normal vector pointing out of the domain it resides in. Because
the three normal vectors on the blood vessels point out of the interstitial space, they
point into the vessels. Our definition also means a mass flux into the interstitial space
is positive.

Wewill use ρ (kg/m3) to represent the density of the interstitial fluid, LDA (cm/Pa/s)
the DA vascular permeability, and PDA (mmHg) the pressure inside the DA. Math-
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ematically, the relation gives the mass flux from the DA surface (∂ΩDA) into the
interstitial space as

− n · (ρu) = ρLDA(PDA − P) x ∈ ∂ΩDA. (3)

We can derive the boundary conditions on the PCV and DLAV surfaces (∂ΩPCV
and ∂ΩDLAV) along the same line to give

− n · (ρu) = LPCV

(
PPCV − P

)
x ∈ ∂ΩPCV and (4)

−n · (ρu) = 2LDLAV

(
PDLAV − P

)
x ∈ ∂ΩDLAV. (5)

The multiplicative factor of 2 in Eq. (5) is there because we are representing two
paired DLAVs as one vessel.

Finally, we will impose no-slip boundary conditions on the four outer boundaries
of the geometry, collectively labelled ∂Ωx,y , and the LEC surface, seen from the
interstitial space domain, ∂ΩLEC/IS+. They are represented by

u = 0 x ∈ ∂Ωx,y and ∂ΩLEC/IS+. (6)

2.3 Reactive Transport of VEGFC and Extracellular Matrix Remodelling

In this subsection, we will add a biochemical reaction network to the mathemati-
cal model. We will model the transport phenomena of the participating biochemical
species too.

VEGFC is synthesised as a preproprotein called proVEGFC; it has an N-terminal
signal sequence followed by an N-terminal propeptide, then the VEGF homology,
and finally a cysteine-rich C-terminal segment (Joukov et al. 1996, 1997; Siegfried
et al. 2003). proVEGFCundergoes cleavage intracellularly and extracellularly (Joukov
et al. 1997). After intracellular processing, proVEGFC will become a tetramer which
has a molecular weight of 120 kDa and it will be secreted (Joukov et al. 1997). The
secreted tetramer will bind to a VEGFR3 receptor on an LEC. On the cell surface, it
is cooperatively cleaved by CCBE1 and ADAMTS3 (Jeltsch et al. 2014). Our investi-
gation is concerned with the spatiotemporal dynamics of VEGFC on the tissue level,
so we are not interested in these events which occur on the cellular level. Therefore,
we will not model any cleavage events of VEGFC, intracellular or extracellular, and
VEGFC-VEGFR3 binding. It follows that VEGFC denotes the tetramer only in this
investigation and it is limited to the interstitial space domain.

We have not discussed the properties of the ECM yet. Its major structural com-
ponents include different kinds of collagens and glycosaminoglycans (Lutter and
Makinen 2014). Collagens make up more than two-thirds of the ECM protein content
in many soft tissues (Swartz and Fleury 2007). According to Prockop and Kivirikko
(1995), collagen type I is the most abundant protein in humans. More specifically for
our study, LECs are mainly surrounded by fibrillar type I collagen in general (Wiig
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et al. 2010; Paupert et al. 2011). The ECM of an embryo regulates its lymphangio-
genic processes in several way (Lutter and Makinen 2014). First, it confers structural
support and stability to the embedded cells, tissues, and organs, but it is also a barrier
to cell migration. Second, the ECM contains components that can bind to a myriad of
cell surface receptors, thus inducing intracellular changes. Third, the ECM can bind
to growth factors, thus sequestering them and creating concentration gradients. It is
the third function that interests us in this investigation. We will model the transport
of VEGFC in the interstitial space domain where it interacts with the ECM. Since
LECs are generally surrounded by fibrillar type I collagen, we will treat the ECM as
pure collagen I in our model. VEGFC binds to heparan sulphate (Lutter and Makinen
2014), but we do not know whether it binds to collagen I. In order to mimic VEGFC’s
interactions with the ECM without modelling heparan sulphate explicitly, we will
assume that VEGFC binds to collagen I reversibly in an 1:1 stoichiometric ratio.

An ECM is not inert and undergoes constant remodelling. According to Helm
et al. (2007), LECs secrete a protease called matrix metallopeptidase 9 (MMP9) to
degrade collagen, thereby rendering their surrounding ECM more conducive to their
migration. According to Bruyère et al. (2008), LECs can produce and activate another
protease called matrix metallopeptidase 2 (MMP2) to regulate lymphangiogenesis.
Commenting on Bruyère et al. (2008), it is argued in Detry et al. (2012) that MMP2 is
more important thanMMP9. This theory explains lymphangiogenesis in terms of LEC
migration through an interstitial collagen I barrier and a collagenolytic pathway driven
by MMP2 (Detry et al. 2012). In this investigation, we will consider the production
and activation of MMP2 in the LEC domain, as well as the degradation of collagen
I by MMP2 in the interstitial space domain. A conceptual model of these MMP2-
related events is proposed in Karagiannis and Popel (2004). In this conceptual model,
proMMP2, TIMP2, and MT1-MMP act cooperatively to activate proMMP2 to form
MMP2. Although MT1-MMP is restricted to the surfaces of LECs, we will disperse
the MT1-MMPmolecules uniformly in our LEC domain to simplify the mathematics.
In our model, the cooperative action occurs in the LEC domain to produce the mature
MMP2. However, proMMP2, MMP2, and TIMP2 can all diffuse into the interstitial
space domain. In the interstitial space domain, TIMP2 can bind to and inhibit MMP2
reversibly. Karagiannis and Popel (2006) is a mathematical modelling study based on
this conceptualmodel and is an inspiration for our study. It is possible for the interstitial
flow to affect the ECM’s composition, either mechanically or by stimulating the LEC
to produce or degrade ECM components. Nonetheless, we will assume that the ECM’s
behaviour is dominated by collagen I and MMP2 dynamics.

Combining the biochemical events described in this subsection,we can construct the
overall biochemical reaction network shown in Fig. 3.Wewill assume that the number
of MT1-MMP molecules in the LEC domain is constant, meaning its production rate
equals its shedding rate. This assumption allows us to ignore shedding in this study
because the shedded species do not interact with the modelled species. MT1-MMP
has its own collagenolytic activity too, but it is localised to the LEC domain. In our
model, the LEC is a stationary circle devoid of collagen I, so we do not need to
model the collagenolytic action of MT1-MMP. Finally, we will not model degraded
collagen I explicitly. As far as we are aware, degraded collagen I does not affect
lymphangiogenesis.
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Fig. 3 Biochemical reaction network of themodel.M2P, proMMP2;M2,MMP2; T2; TIMP2; C1, collagen
I; MT1, MT1-MMP. A dot between two species means they are complexed together in one molecule. Only
proMMP2, MMP2, and TIMP2 are present in both domains and can cross the boundary between them. A
mobile species undergoes diffusion and/or convection; an immobile one does not. Only the red events are
represented by the mathematical model developed in this paper

We will use a set of reaction–diffusion–convection equations to model the spa-
tiotemporal dynamics of the mobile species in the interstitial space. We will use Ci

(M) to represent the molar concentration of species i; t (s), time; Deff
i (µm2/s), the

effective diffusivity of species i; ω, the volume fraction where diffusion occurs; u
(µm/s), the velocity from our mathematical model of the interstitial flow; RIS

i (M/s),
the net rate of production of species i at a point in the interstitial space. The equation
is

∂Ci

∂t
= ∇ ·

(
Deff
i ∇

(
Ci

ω

)
− uCi

)
+ RIS

i . (7)

Diffusion does not occur in collagen I fibrils or the fluid associated with them. The
volume into which a molecular species can diffuse should be based on the specific
‘wet’ weight of collagen I. Denoting the partial specific volume of hydrated collagen
I by vC1h (cm3/g) and the combined mass concentration of free and VEGFC-bound
collagen I by [Cl]m (kg/dm3), we can use a relation from Levick (1987) for ω,

ω = 1 − vC1h[Cl]m . (8)

The effective diffusivity of each diffusible species can be calculated by Ogston’s
equation (Ogston et al. 1973). Labelling the diffusivity of species i in pure interstitial
fluid by D∞

i (µm2/s), the volume fraction of dry collagen I fibrils (without associated
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water molecules) by ν, the radius of a collagen I fibril by r f (µm), and the Stokes-
Einstein radius of species i by rs,i (µm), the equation is

Deff
i = D∞

i exp

(−√
νrs,i
r f

)
. (9)

Using vC1 (cm3/g) to label the partial specific volume of dry collagen I, the equation
for the dry volume fraction of collagen I is given in Levick (1987),

ν = vC1[Cl]m . (10)

Denoting the Boltzmann constant by kB (1.380648813×10−23J K−1) and temper-
ature by T (K), the Stokes–Einstein radius is given in Einstein (1905) as

rs,i = kBT

6πμD∞
i

. (11)

We will use a set of ordinary differential equations to model the temporal dynamics
of the immobile species in the interstitial space,

∂Ci

∂t
= RIS

i . (12)

In the LEC domain, there is neither collagen I nor an interstitial flow. With RLEC
i

(M/s) being the net rate of production of species i at a point in the LEC, the governing
equations for the mobile species there are reaction–diffusion equations of the form

∂Ci

∂t
= D∞

i ∇2Ci + RLEC
i . (13)

In the LEC domain again, the governing equations for the immobile species are a
set of ordinary differential equations as follows,

∂Ci

∂t
= RLEC

i . (14)

The reaction terms, RIS
i and RLEC

i , can be worked out from the biochemical reac-
tion network in Fig. 3. We will apply mass action kinetics to most reactions. Mass
action kinetics assumes that the rate of a reaction is the product of a rate constant
and the concentrations of the participating reactants. An exception is the enzymatic
degradation of collagen I by MMP2, to which we will employ Michaelis–Menten
kinetics. If we assume the complex, MMP2·collagen I, is at a steady state, we can
approximate collagenolysis by MMP2 as a single second-order kinetic process. This
approximation is used and justified in Karagiannis and Popel (2004). We can do the
same for the last two steps in the activation of MMP2 by assuming a steady state for
the quaternary complex. This approximation is also used and justified in Karagiannis
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Table 2 Reaction terms in the interstitial space

Reaction term Form Equations

RIS
M2P −k

deg
M2PCM2P (7)

RIS
M2 −konM2,T2CM2CT2 + koffM2,T2CM2·T2 − k

deg
M2CM2 (7)

RIS
T2 −konM2,T2CM2CT2 + koffM2,T2CM2·T2 − k

deg
T2 CT2 (7)

RIS
M2·T2 konM2,T2CM2CT2 − koffM2,T2CM2·T2 − k

deg
M2·T2CM2·T2 (7)

RIS
VC −konVC,C1CVCCC1 + koffVC,C1CVC·C1 − k

deg
VCCVC (7)

RIS
C1 − kcatM2,C1CM2CC1

KM2,C1
M +CC1

− konVC,C1CVCCC1 + koffVC,C1CVC·C1 (12)

RIS
VC·C1 konVC,C1CVCCC1-k

off
VC,C1CVC·C1 (12)

M2 and T2 complex reversibly. VEGFC binds to C1 reversibly. M2 degrades C1 catalytically. M2P, M2,
T2, M2 · T2, and VEGFC degrade in the interstitial space. konVC,C1 (M−1s−1) and koffVC,C1 (s−1) are the

binding and unbinding rate constants of VC and C1; konM2,T2 (M
−1s−1) and koffM2,T2 (s

−1), the binding and

unbinding rate constants of M2 and T2; kcatM2,C1 (s
−1), the turnover number in the degradation of C1 byM2;

KM2,C1
M (M), the Michaelis–Menten constant in the degradation of C1 by M2; kdegi (s−1), the degradation

rate constant of species i. M2P, proMMP2; M2, MMP2; T2, TIMP2; VC, VEGFC; C1, collagen I

and Popel (2004). There are also some ‘auxiliary’ reactions. proMMP2 and TIMP2 are
produced in the LEC. The molecules in the interstitial space are subjected to attacks
from enzymes (Gutfreund 1993). Exceptions are collagen I and VEGFC sequestered
by collagen I. We are already modelling collagen I degradation by MMP2; sequestra-
tion by collagen I protects VEGFC from enzymatic attacks. The reaction terms in the
interstitial space, RIS

i , are given in Table 2. The reaction terms in the LEC, RLEC
i , are

given in Table 3.
On the four outer boundaries of the geometry and the vessel surfaces,wewill impose

no-flux boundary conditions for each mobile species. Our choices are justified as
follows. First, there is no evidence that zebrafish lose the modelled molecules through
their skin. While we could model this hypothetical mechanism, our model will not be
less descriptive without it. Second, to the best of our knowledge, there is no evidence
that the modelled molecules can enter the blood vessels. If they do pass through the
vessel surfaces,we have no idea howmuch is filtered by the lining cellswhichmayhave
binding receptors, for example.Anyway, theywill simply degrade inside the vessels, so
we will not model this hypothetical and poorly defined phenomenon. An exception is
the flux ofVEGFC from theDA surface into the interstitial space. VEGFC is expressed
in the hypochord, the dorsal aorta, and the ventral mesenchyme of a zebrafish at 48
HPF (Hogan et al. 2009). The high pressure in the DA means convection is most
significant around it. We will place the source of VEGFC on the DA’s surface. This
arrangement will retain the essences of VEGFC transport in zebrafish embryos and
keep the model simple simultaneously. We should remind ourselves that VEGFC is
not released from the blood inside the DA. Its production by a part of the DA’s wall
is independent of that elsewhere on the DA, so its release rate does not change along
the DA.
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Table 3 Reaction terms in the lymphatic endothelial cell

Reaction term Form Equations

RLEC
M2P PM2P − konMT1·T2,M2PCMT1·T2CM2P (13)

+ koffMT1·T2,M2PCMT1·T2·M2P

RLEC
M2 keffactCMT1·T2·M2PCMT1 (13)

RLEC
T2 PT2 − konMT1,T2CMT1CT2 + koffMT1,T2CMT1·T2 (13)

RLEC
MT1 − konMT1,T2CMT1CT2 + koffMT1,T2CMT1·T2 (14)

RLEC
MT1·T2 konMT1,T2CMT1CT2 − koffMT1,T2CMT1·T2 (14)

− konMT1·T2,M2PCMT1·T2CM2P

+ koffMT1·T2,M2PCMT1·T2·M2P

+ keffactCMT1·T2·M2PCMT1

RLEC
MT1·T2·M2P konMT1·T2,M2PCMT1·T2CM2P (14)

− koffMT1·T2,M2PCMT1·T2·M2P

− keffactCMT1·T2·M2PCMT1

M2P and T2 are produced at constant rates in the lymphatic endothelial cell. T2 binds to MT1 reversibly.
M2P binds toMT1·T2 reversibly.MT1 activates theM2P inMT1·T2·M2P to formM2 and releaseMT1·T2.
PM2P and PT2 (M s−1) are the production rates of M2P and T2 by the lymphatic endothelial cell; konMT1,T2
(M−1s−1) and koffMT1,T2 (s−1), the binding and unbinding rate constants of MT1 and T2; konMT1·T2,M2P
(M−1s−1) and koffMT1·T2,M2P (s−1), the binding and unbinding rate constants of MT1 · T2 and M2P; keffact

(M−1s−1), the activation rate constant of M2.M2P, proMMP2;M2,MMP2; T2, TIMP2;MT1,MT1-MMP

On the four outer boundaries, the no-flux boundary conditions for proMMP2,
MMP2, TIMP2, MMP2·TIMP2, and VEGFC are given by

n ·
[
Deff
i ∇

(
Ci

ω

)
− uCi

]
= 0 x ∈ ∂Ωx,y . (15)

On the PCV and the DLAV, they are

n ·
[
Deff
i ∇

(
Ci

ω

)
− uCi

]
= 0 x ∈ ∂ΩPCV and (16)

n ·
[
Deff
i ∇

(
Ci

ω

)
− uCi

]
= 0 x ∈ ∂ΩDLAV. (17)

On the DA, the boundary conditions for the mobile species except VEGFC are

n ·
[
Deff
i ∇

(
Ci

ω

)
− uCi

]
= 0 x ∈ ∂ΩDA. (18)

For VEGFC, with RDA
VC (mol µm−2s−1) being the release rate of VEGFC on the

surface of the DA, the constant flux is
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− n ·
[
−Deff

VC∇
(
CVC

ω

)
+ uCVC

]
= RDA

VC x ∈ ∂ΩDA. (19)

On the LEC’s surface, we will impose continuity conditions on the species which
can cross the boundary between the LEC and interstitial space domains. We will
denote the LEC surface seen from the interstitial space by ∂ΩLEC/IS+. Seen from the
LEC domain, the surface is ∂ΩLEC/IS−. Continuity applies to proMMP2, MMP2, and
TIMP2 as follows,

n ·
[
Deff
i ∇

(
Ci

ω

)
− uCi

]
|∂ΩLEC/IS+ = −n · (

D∞
i ∇Ci

) |∂ΩLEC/IS− and (20)

Ci |∂ΩLEC/IS+ = Ci |∂ΩLEC/IS− . (21)

On theLEC surface seen from the interstitial space,wewill apply no-flux conditions
on MMP2·TIMP2 and VEGFC,

n ·
[
Deff
i ∇

(
Ci

ω

)
− uCi

]
= 0 x ∈ ∂ΩLEC/IS+. (22)

We also need a set of initial concentrations. In the LEC domain, we will assume
that only MT1-MMP is present at t = 0; in the interstitial space, we will assume that
only collagen I is present at t = 0. We will label the initial concentrations of these
species by CMT1,0 and CC1,0, respectively.

2.4 Connection of Extracellular Matrix Remodelling to Interstitial Flow

The interstitial flow is dependent on the composition of the interstitial space. Specif-
ically, it depends on the dynamics of the ECM. This is obvious from Eq. (1), where
κ is the specific hydraulic conductivity of the ECM. As the ECM remodels, this con-
ductivity will also change, thereby affecting the interstitial flow.

We will define κ ′ (cm4 s−1dyn−1) as the hydraulic conductivity of the ECM and
[Collagen I] as themass fraction of free andVEGFC-bound collagen I in the interstitial
space. Using the experimental data presented in Levick (1987), we can relate the two
by

log κ ′ = −2.70 log
[
Collagen I

] − 14.18. (23)

With MC1 (kg mol−1) being the molar mass of collagen I, [Collagen I] is given by

[Collagen I] = MC1(CC1 + CVC·C1)
1 kg dm−3 . (24)

Equation (24) assumes a density of 1 kg dm−3 for the interstitial space. It is also
assumed that the combined mass of the interstitial fluid and the ECM in the interstitial
space is conserved. When collagen I degrades, the products remain in the interstitial
space, so the mass of a region is fixed at 1 kg dm−3 multiplied by the volume of the
region. The experiments cited in Levick (1987) were carried out using a reference fluid
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Table 4 Parameters of the interstitial flow component of the mathematical model

Parameter Definition Value Reference

PDA DA pressure 0.1844 mmHg
Hu et al. (2000)

PDLAV DLAV pressure 0 mmHg Assumed

PPCV PCV pressure 0 mmHg Assumed

LDA DA permeability 7.20 × 106 cm s−1 cmH2O−1 cm s−1 cmH2O−1

Jain (1987)

LDLAV DLAV
permeability

7.20 × 106 cm s−1cmH2O−1

Jain (1987)

LPCV PCV permeability 7.20 × 106 cm s−1 cmH2O−1

Jain (1987)

MC1 Molar mass of
collagen I

300 kg mol−1

Karagiannis and
Popel (2006)

μ IF dynamic
viscosity

1.200 cP
Swartz and Fleury
(2007)

ρ IF density 1025 kg m−3

Frcitas (1998)

DA dorsal aorta, PCV posterior cardinal vein, DLAV dorsal longitudinal anastomotic vessel, IF interstitial
fluid

with a dynamic viscosity of 1 cP. We can therefore convert the hydraulic conductivity
to the specific hydraulic conductivity by κ = κ ′ × 10−2dyn s cm−2.

2.5 Parametrisation

We will begin our parametrisation with the interstitial flow component of the model.
We need the pressures inside the three blood vessels, their permeabilities, as well as the
properties of the interstitial fluid and the ECM. Table 4 summarises these parameters
whose origins are explained below.

In Hu et al. (2000), the DA peak systolic and end-diastolic pressures of zebrafish
embryos are related to their wet bodyweights. At 48HPF, thewet bodyweight is 0.714
mg. Ignoring the pulsating nature of blood flow, we will average the measured peak
systolic (0.2433mmHg) and end-diastolic (0.1255mmHg) pressures corresponding to
this wet body weight. This gives an estimated DA pressure of 0.1844 mmHg relative
to the pressure outside the embryo. The PCV and the DLAV are parts of a closed
and pumped blood circulatory system, so they must have higher pressures than the
embryo’s unpumped surrounding. However, in the absence of data about pressure
drops in the circulatory system, back-of-the-envelope estimates are unlikely to be
accurate. For the sake of simplicity, we will just set the PCV and DLAV pressures
to zero. The DA pressure must drop along the vessel from the zebrafish’s heart. Our
geometry includes a slice of the DA only, so the pressure drop does not show up in
the model. It is not important either because the lymphangiogenic processes in Fig. 1
do not occur along the anterior–posterior axis.
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Table 5 Transport parameters in the reaction–diffusion–convection equation and its simplified forms

Parameter Definition Value References

D∞
VC Diffusivity of VC 5.01 × 10−7 cm2/s Berk et al. (1993)

D∞
M2 Diffusivity of M2 0.85 × 10−6 cm2/s Karagiannis and Popel (2006)

D∞
M2P Diffusivity of M2P 0.80 × 10−6 cm2/s Karagiannis and Popel (2006)

D∞
M2·T2 Diffusivity of M2·T2 0.75 × 10−6 cm2/s Karagiannis and Popel (2006)

D∞
T2 Diffusivity of T2 1.10 × 10−6 cm2/s Karagiannis and Popel (2006)

r f Radius of a C1 fibril 2 nm Karagiannis and Popel (2006)

vC1 Specific volume of dry C1 0.75 cm3/s Levick (1987)

vC1h Specific volume of hydrated C1 1.89 cm3/s Levick (1987)

T Temperature 298 K Assumed

M2P, proMMP2; M2, MMP2; T2, TIMP2; VC, VEGFC; C1, collagen I

We have already decided to use one vascular permeability for the three blood
vessels. We will rely on Jain (1987) for this parameter. The reported measurements
are concerned with species ranging from Guinea pigs to frogs. Although zebrafish
is not among these species, we can use the permeability for frog skeletal muscles,
7.2 × 106 cm s−1 cmH2O−1. The justification is that both frogs and zebrafish are
cold-blooded.

The specific hydraulic conductivity of the ECM is given by the relation in Sect. 2.4.
However, we need MC1 in Eq. (24). The model in Karagiannis and Popel (2006) uses
a molecular weight of around 300 kDa for a collagen I fibril, which is equivalent to a
molar mass of 300 kg mol−1.

The interstitial fluid contains roughly 40% of the protein concentration of blood
plasma (Swartz and Fleury 2007). Their similarities in composition allow us to use the
parameter values for blood plasma. At 37 ◦C, the dynamic viscosity of blood plasma
is 1.2 cP (Swartz and Fleury 2007) and its density is 1025 kg/m3 (Frcitas 1998).

We will turn our attention to the reaction–diffusion–convection equation and its
reduced forms next. Their parameters can be categorised into transport and kinetic
parameters.

In order to calculate the volume fraction where diffusion occurs using Eq. (8) and
the effective diffusivity of a species using Eq. (9), we need several parameters. We
will assume a temperature of 298 K. A collagen I fibril is approximately 300 nm
long and 4 nm in diameter, so r f is 2 nm (Karagiannis and Popel 2006). We can also
find the required D∞

i values in Karagiannis and Popel (2006) and Berk et al. (1993).
The partial specific volume of dry collagen I and that of hydrated collagen I, vC1 and
vC1h, are 0.75 and 1.89 cm3/g (Levick 1987). These parameters are summarised in
Table 5.

The majority of our kinetic parameters about ECM remodelling are fromKaragian-
nis and Popel (2006, 2004). Their sources are various experimental studies. We are
unaware of any data on VEGFC–collagen I interactions. In fact, we do not even know
whether VEGFC binds to collagen I. We must rely on other data. In Köhn-Luque et al.
(2013), there are reports of experimentally estimated parameters on the interactions
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Table 6 Kinetic parameters in the reaction–diffusion–convection equation and its simplified forms

Parameter Value References

konVC,C1 3.60 × 104 M−1s−1 Köhn-Luque et al. (2013)

koffVC,C1 3.60 × 10−3 s−1 Köhn-Luque et al. (2013)

konM2,T2 5.90 × 106 M−1 s−1 Karagiannis and Popel (2004)

koffM2,T2 6.30 s−1 Karagiannis and Popel (2004)

konMT1,T2 3.54 × 106 M−1 s−1 Toth et al. (2002)

koffMT1,T2 2 × 10−4 s−1 Toth et al. (2002)

konMT1·T2,M2P 0.14 × 106 M−1 s−1 Karagiannis and Popel (2004)

koffMT1·T2,M2P 4.70 × 10−3 s−1 Karagiannis and Popel (2004)

keffact 2.80 × 103 M−1 s−1 Karagiannis and Popel (2004)

kcatM2,C1 4.50 × 10−3 s−1 Karagiannis and Popel (2004)

KM2,C1
M 8.50 × 10−6 M Karagiannis and Popel (2004)

k
deg
VC 10−4 s−1 Hashambhoy et al. (2011)

k
deg
M2 10−4 s−1 Hashambhoy et al. (2011)

k
deg
M2P 10−4 s−1 Hashambhoy et al. (2011)

k
deg
M2·T2 10−4 s−1 Hashambhoy et al. (2011)

k
deg
T2 10−4 s−1 Hashambhoy et al. (2011)

PM2P 2.64 × 10−8 M s−1 Vempati et al. (2010)

PT2 1.54 × 10−10 M s−1 Vempati et al. (2010)

RDA
VC 1.65 × 10−17 mol dm−2 s−1 Hashambhoy et al. (2011)

koni, j means the binding rate constant of species i and j; koffi, j , their unbinding rate constant; k
eff
act , the activation

rate constant of M2; kcatM2,C1, the turnover number in the degradation of C1 byM2; KM2,C1
M , the Michaelis–

Menten constant in the degradation of C1 by M2; kdegi , the degradation rate constant of species i; Pi , the

production rate of species i; RDA
VC , the production rate of VC on the surface of the dorsal aorta

M2P, proMMP2; M2, MMP2; T2, TIMP2; VC, VEGFC; C1, collagen I; MT1, MT1-MMP

between VEGF (related to but different from VEGFC) and various ECM molecules
like fibronectin and heparan sulphate proteoglycans. We will use the general degra-
dation rate constant used in Hashambhoy et al. (2011). For the production rates of
proMMP2 and TIMP2, we will use the secretion rates of general MMP and TIMP by
endothelial cells, used inVempati et al. (2010). These estimates are inmolecules/cell/h,
but we can convert them to M s−1 using the known LEC diameter of 10 µm. We are
unaware of any data on the production rate of VEGFC. Therefore, we will use the
secretion rate of VEGF by endothelial cells, estimated in Hashambhoy et al. (2011).
These parameters are summarised in Table 6.

Finally, we need the initial concentration of MT1-MMP in the LEC and that of
collagen I in the interstitial space.CMT1,0 is unavailable for endothelial cells. However,
a value based on other cell types, 180,000 molecules/cell or 5.71 × 10−7 M, is in
Karagiannis and Popel (2006). In adult tissues, the concentration of collagen I ranges
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from 1.76× 10−4 to 5.29× 10−4 M (Levick 1987; Karagiannis and Popel 2006). We
will use the midpoint of this range, so CC1,0 is 3.50 × 10−4 M for adult tissues. The
collagen content of frog embryos and larvae ranges from 4.51×10−7 M to 2.73×10−6

M (Edds Jr 1958). We will use the midpoint of this range, 1.59 × 10−6 M.

2.6 Nondimensionalisation

Nondimensionalisation reduces the number of parameters in a mathematical model,
gives us insights into the model in terms of its key parameters and characteristic prop-
erties, and identifies any mathematical techniques for approximation like limiting
cases. We need the characteristic scales of the model in order to nondimensionalise
it. To obtain the nondimensionalised spatial coordinates, x̃ = x

L , we need the length
scale, L; we will use the largest dimension of the geometry, 434 µm. We will use
PDA = 0.1844 mmHg to scale the pressure field, P̃ = P

PDA . Because we are inter-
ested in the period from 36 to 48 HPF, we will use a time scale, τ , of 12h. The
nondimensionalised time is therefore t̃ = t

τ
. Velocity is scaled like ũ = u

U . The

concentrations are nondimensionalised like C̃i = Ci
Ci,s

. Since we are not modelling
collagen I synthesis, its initial concentration is also its highest possible concen-
tration. Therefore, we will use the initial concentration of collagen I as its scale,
CC1,s = CC1,0. We will use the adult value, CC1,0 = 3.50 × 10−4 M. The con-
centrations of MT1-MMP and its two complexes will always add up to the initial
concentration of MT1-MMP, CMT1,0 = 5.71 × 10−7 M. We will use this value for
CMT1,s,CMT1·T2,s, andCMT1·T2·M2P,s. We will determine the velocity scale,U (µm/s),
and the remaining concentration scales while nondimensionalising the model. The
scales are summarised in Table 7. Nondimensionalising the model by these scales,
we will obtain a model parametrised by the dimensionless groups in Tables 8 and 9.
Below are the details of how nondimensionalisation is carried out for ourmathematical
model.

First, we will nondimensionalise the interstitial flow equations. In this study, a
tilde represents a nondimensionalised variable, for example, ũ = u

U . Combining Eqs.
(23) and (24), we can rearrange the resulting equation to write κ ′ in terms of CC1 and
CVC·C1.We can convert κ ′ to κ using κ = κ ′×10−2dyn s cm−2. Defining the constants
β = 6.61 × 10−17 cm2 and α = −2.70, we can write κ as β[MC1(CC1+CVC ·C1)

1 kg dm−3 ]α .
Substituting this equation for κ into Eq. (1) and nondimensionalising the variables,
we can write the nondimensionalised Brinkman’s equation as follows,

∇̃ P̃ = − μUL

PDAβ
(
MC1CC1,s

)α

ũ(
C̃C1 + CVC·C1,s

CC1,s
C̃VC·C1

)α + μU

LPDA ∇̃2
ũ. (25)

To simplify Eq. (25), we will lump the parameters into dimensionless groups,
η1 = μUL

PDAβ(MC1CC1,s)α
, η2 = CVC·C1,s

CC1,s
, and η3 = μU

LPDA . To determine the scale of u,

we can use either η1 or η3. Choosing η1 = 1 will lead to U = 1.371 × 10−4 µm/s;
choosing η3 = 1 will lead to U = 8.891 m/s. The velocity for an interstitial flow is
reported to range from 0.1 to 2 µm/s (Swartz and Fleury 2007), so η1 = 1 gives a more
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Table 7 Scales used for nondimensionalisation

Scale Description Value

CC1,s Concentration scale for C1 3.50 × 10−4 M

CVC,s Concentration scale for VC 1.64 × 10−10 M

CVC·C1,s Concentration scale for VC·C1 8.93 × 10−5 M

CM2,s Concentration scale for M2 3.94 × 10−5 M

CM2P,s Concentration scale for M2P 1.14 × 10−3 M

CM2·T2,s Concentration scale for M2·T2 6.68 × 101 M

CMT1,s Concentration scale for MT1 5.71 × 10−7 M

CMT1·T2,s Concentration scale for MT1·T2 5.71 × 10−7 M

CMT1·T2·M2P,s Concentration scale for MT1·T2·M2P 5.71 × 10−7 M

CT2,s Concentration scale for T2 6.65 × 10−6 M

L Length scale 434 µm

PDA Pressure scale and DA pressure 0.1844 mmHg

τ Time scale 43200 s

U Velocity scale 1.371 × 10−4 µm/s

M2P, proMMP2; M2, MMP2; T2, TIMP2; VC, VEGFC; C1, collagen 1; MT1, MT1-MMP

appropriate velocity scale. This choice also leads to η3 = 1.542 × 10−11. Therefore,
Eq. (25) becomes

∇̃ P̃ = − ũ(
C̃C1 + η2C̃VC·C1

)α + η3∇̃2
ũ. (26)

Nondimensionalising Eq. (2) and the boundary conditions, then defining the dimen-

sionless groups ηDA = LDAPDA

U , ηPCV = LPCVPDA

U , and ηDLAV = 2LDLAVPDA

U , we will
obtain the remaining nondimensionalised interstitial flowequations and their boundary
conditions,

∇̃ · ũ = 0, (27)

−n · ũ = ηDA

(
1 − P̃

)
x̃ ∈ ∂ΩDA, (28)

−n · ũ = ηPCV

(
PPCV

PDA − P̃

)
x̃ ∈ ∂ΩPCV, (29)

−n · ũ = ηDLAV

(
PDLAV

PDA − P̃

)
x̃ ∈ ∂ΩDLAV, and (30)

ũ = 0 x̃ ∈ ∂Ωx,y and ∂ΩLEC/IS+. (31)

Second, we need to nondimensionalise the equations governing the concentration
fields in the interstitial space, (7) and (12). To do so, we need to introduce D̃eff

i =
Deff
i τ

L2 , λ7 = Uτ
L , and R̃IS

i = RIS
i τ

Ci,s
. Then, the nondimensionalised reaction–diffusion–

convection equation takes the form
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Table 8 Dimensionless
parameters in the
nondimensionalised interstitial
flow and
reaction–diffusion–convection
equation

Parameter Form Value

α Constant −2.70

η1
μUL

PDAβ(MC1CC1,s)
α 1

η2
CVC·C1,s
CC1,s

0.255

η3
μU

LPDA 1.542 × 10−11

ηDA
LDAPDA

U 1.317 × 1014

ηPCV
LPCVPDA

U 1.317 × 1014

ηDLAV
2LDLAVPDA

U 2.634 × 1014

λ1,VC
D∞
VCτ

L2
1.15 × 101

λ1,M2
D∞
M2τ

L2
1.95 × 101

λ1,M2P
D∞
M2Pτ

L2
1.83 × 101

λ1,M2·T2
D∞
M2·T2τ
L2

1.72 × 101

λ1,T2
D∞
T2τ

L2
2.52 × 101

λ2,VC
kBT

6πμD∞
VCr f

1.81

λ2,M2
kBT

6πμD∞
M2r f

1.07

λ2,M2P
kBT

6πμD∞
M2Pr f

1.14

λ2,M2·T2 kBT
6πμD∞

M2·T2r f
1.21

λ2,T2
kBT

6πμD∞
T2r f

8.26 × 10−1

λ3 vC1MC1CC1,s 7.88 × 10−2

λ4 vC1MC1CVC·C1,s 2.01 × 10−2

λ5 vC1hMC1CC1,s 1.98 × 10−1

λ6 vC1hMC1CVC·C1,s 5.06 × 10−2

λ7
Uτ
L 1.36 × 10−2

DA dorsal aorta, PCV posterior
cardinal vein, DLAV dorsal lon-
gitudinal anastomotic vessel
M2P, proMMP2; M2, MMP2;
T2, TIMP2; VC, VEGFC; C1,
collagen I

∂C̃i

∂ t̃
= ∇̃ ·

[
D̃eff
i ∇̃

(
C̃i

ω

)
− λ7ũC̃i

]
+ R̃IS

i . (32)

We will define the dimensionless parameters λ5 = vC1hMC1CC1,s and λ6 =
vC1hMC1CVC·C1,s. Then, we can write ω as

ω = 1 − λ5C̃C1 − λ6C̃VC·C1. (33)

D̃eff
i can be expressed in terms of the dimensionless parameters λ1,i = D∞

i τ

L2 ,

λ2,i = kBT
6πμD∞

i r f
, λ3 = vC1MC1CC1,s, and λ4 = vC1MC1CVC·C1,s. This expression is
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Table 9 Dimensionless
parameters in the
nondimensionalised reaction
terms

Parameter Form Value

λ8
PM2Pτ
CM2P,s

1

λ9 konMT1·T2,M2PτCMT1·T2,s 3.45 × 103

λ10
koffMT1·T2,M2PτCMT1·T2·M2P,s

CM2P,s
1.02 × 10−1

λ11 k
deg
M2Pτ 4.32

λ12
keffactτCMT1·T2·M2P,sCMT1,s

CM2,s
1

λ13 konM2,T2τCT2,s 1.69 × 106

λ14
koffM2,T2τCM2·T2,s

CM2,s
4.61 × 1011

λ15 k
deg
M2 τ 4.32

λ16
PT2τ
CT2,s

1

λ17 konMT1,T2τCMT1,s 8.73 × 104

λ18
koffMT1,T2τCMT1·T2,s

CT2,s
7.42 × 10−1

λ19 konM2,T2τCM2,s 1 × 107

λ20
koffM2,T2τCM2·T2,s

CT2,s
2.73 × 1012

λ21 k
deg
T2 τ 4.32

λ22
konM2,T2τCM2,sCT2,s

CM2·T2,s 1

λ23 koffM2,T2τ 2.72 × 105

λ24 k
deg
M2·T2τ 4.32

λ25 konVC,C1τCC1,s 5.44 × 105

λ26
koffVC,C1τCVC·C1,s

CVC,s
8.47 × 107

λ27 k
deg
VC τ 4.32

λDAVC
RDAVC τ

CVC,sL
1

λ28 kcatM2,C1τCM2,s 7.66 × 10−3

λ29 konVC,C1τCVC,s 2.55 × 10−1

λ30
koffVC,C1τCVC·C1,s

CC1,s
3.97 × 101

λ31
konVC,C1τCVC,sCC1,s

CVC·C1,s 1

λ32 koffVC,C1τ 1.56 × 102

λ33 konMT1,T2τCT2,s 1.02 × 106

λ34
koffMT1,T2τCMT1·T2,s

CMT1,s
8.64

λ35
konMT1,T2τCMT1,sCT2,s

CMT1·T2,s 1.02 × 106

λ36 koffMT1,T2τ 8.64
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Table 9 continued Parameter Form Value

λ37 konMT1·T2,M2PτCM2P,s 6.89 × 106

λ38
koffMT1·T2,M2PτCMT1·T2·M2P,s

CMT1·T2,s 2.03 × 102

λ39
keffactτCMT1·T2·M2P,sCMT1,s

CMT1·T2,s 6.91 × 101

λ40
konMT1·T2,M2PτCMT1·T2,sCM2P,s

CMT1·T2·M2P,s
6.89 × 106

λ41 koffMT1·T2,M2Pτ 2.03 × 102

λ42 keffactτCMT1,s 6.91 × 101

It should be noted that λ28 is not
really dimensionless and is in M,

but the term λ28C̃M2C̃C1

KM2,C1
M +CC1,sC̃C1

is dimensionless because the
denominator is also in M
M2P, proMMP2; M2, MMP2;
T2, TIMP2; VC, VEGFC; C1,
collagen 1; MT1, MT1-MMP;
DA dorsal aorta

D̃eff
i = λ1,i exp

(
−λ2,i

√
λ3C̃C1 + λ4C̃VC·C1

)
. (34)

For the immobile species in the interstitial space, the reaction–diffusion–convection
equation is reduced to

∂C̃i

∂ t̃
= R̃IS

i . (35)

Third, we will nondimensionalise the equations governing the concentration fields

in the LEC domain, (13) and (14). After introducing R̃LEC
i = RLEC

i τ

Ci,s
, we can write

down
∂C̃i

∂ t̃
= λ1,i ∇̃2

C̃i + R̃LEC
i . (36)

For the immobile species in the LEC domain, the reaction–diffusion equation is
reduced to

∂C̃i

∂ t̃
= R̃LEC

i . (37)

Fourth, we will nondimensionalise the boundary and initial conditions of the
concentrations. Equations (15–17), which apply to proMMP2, MMP2, TIMP2,
MMP2·TIMP2, and VEGFC, have the following nondimensionalised forms,

n ·
[
D̃eff
i ∇̃

(
C̃i

ω

)
− λ7ũC̃i

]
= 0 x̃ ∈ ∂Ωx,y, (38)

n ·
[
D̃eff
i ∇̃

(
C̃i

ω

)
− λ7ũC̃i

]
= 0 x̃ ∈ ∂ΩPCV, and (39)

n ·
[
D̃eff
i ∇̃

(
C̃i

ω

)
− λ7ũC̃i

]
= 0 x̃ ∈ ∂ΩDLAV. (40)
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The boundary conditions for proMMP2,MMP2, TIMP2, andMMP2·TIMP2 on the
DA’s surface, represented by Eq. (18), have the following nondimensionalised form,

n ·
[
D̃eff
i ∇̃

(
C̃i

ω

)
− λ7ũC̃i

]
= 0 x̃ ∈ ∂ΩDA. (41)

With λDAVC = RDA
VCτ

CVC,sL
being the dimensionless production rate of VEGFC, we can

scaleCVC by settingλDAVC = 1, soCVC,s = 1.64×10−10 M. Then, the influx ofVEGFC
from the DA surface into the interstitial space, Eq. (19), has the nondimensionalised
form

−n ·
[
−D̃eff

i ∇̃
(
C̃i

ω

)
+ λ7ũC̃i

]
= λDAVC x̃ ∈ ∂ΩDA. (42)

The boundary conditions on the LEC’s surface, Eqs. (20–22), are then nondimen-
sionalised to give

n ·
[
D̃eff
i ∇̃

(
C̃i

ω

)
− λ7ũC̃i

] ⏐⏐⏐
∂ΩLEC/IS+

= −n ·
(
λ1,i ∇̃C̃i

) ⏐⏐⏐
∂ΩLEC/IS−

, (43)

C̃i |∂ΩLEC/IS+ = C̃i |∂ΩLEC/IS− , and (44)

n ·
[
D̃eff
i ∇̃

(
C̃i

ω

)
− λ7ũC̃i

]
= 0 x̃ ∈ ∂ΩLEC/IS+. (45)

The continuity condition definedbyEqs. (43) and (44) applies to proMMP2,MMP2,
and TIMP2. The no-flux condition defined by Eq. (45) applies to MMP2·TIMP2 and
VEGFC.

The initial concentrations of MT1-MMP in the LEC domain and collagen I in the
interstitial space domain are C̃MT1 = 1 and C̃C1 = 1, respectively.

Finally, we need to define the nondimensionalised reaction terms, R̃IS
i = RIS

i τ

Ci,s
and

R̃LEC
i = RLEC

i τ

Ci,s
, in terms of nondimensionalised concentrations. We need the remain-

ing concentration scales. We will scale CM2P by setting the dimensionless production
term of proMMP2 to unity, PM2Pτ

CM2P,s
= 1. This leads toCM2P,s = 1.14×10−3 M.Wewill

set the dimensionless production term of MMP2 to unity, keffactτCMT1·T2·M2P,sCMT1,s
CM2,s

= 1.

This gives the concentration scale for MMP2, CM2,s = 3.94 × 10−5 M. Set-
ting the dimensionless production term of TIMP2 to unity, PT2τ

CT2,s
= 1, we can

obtain the concentration scale CT2,s = 6.65 × 10−6 M. If the binding term of

MMP2 and TIMP2 is set to unity,
konM2,T2τCM2,sCT2,s

CM2·T2,s = 1, the concentration scale is

CM2·T2,s = 6.68 × 101 M. Similarly, by equating the binding term of VEGFC and

collagen I to unity,
konVC,C1τCVC,sCC1,s

CVC·C1,s = 1, we can scale the concentration of bound

VEGFC, CVC·C1,s = 8.93 × 10−5 M. With all the scales determined, the reaction
terms can easily be worked out. They are summarised in Table 10.
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Table 10 Nondimensionalised reaction terms in the interstitial space and lymphatic endothelial cell
domains

Reaction term Form Equations

R̃IS
M2P −λ11C̃M2P (32)

R̃IS
M2 −λ13C̃M2C̃T2 + λ14C̃M2·T2 − λ15C̃M2 (32)

R̃IS
T2 −λ19C̃M2C̃T2 + λ20C̃M2·T2 − λ21C̃T2 (32)

R̃IS
M2·T2 C̃M2C̃T2 − λ23C̃M2·T2 − λ24C̃M2·T2 (32)

R̃IS
VC −λ25C̃VCC̃C1 + λ26C̃VC·C1 − λ27C̃VC (32)

R̃IS
C1

−λ28C̃M2C̃C1

KM2,C1
M +CC1,sC̃C1

− λ29C̃VCC̃C1 + λ30C̃VC·C1 (35)

R̃IS
VC·C1 C̃VCC̃C1 − λ32C̃VC·C1 (35)

R̃LEC
M2P 1 − λ9C̃MT1·T2C̃M2P + λ10C̃MT1·T2·M2P (36)

R̃LEC
M2 C̃MT1·T2·M2PC̃MT1 (36)

R̃LEC
T2 1 − λ17C̃MT1C̃T2 + λ18C̃MT1·T2 (36)

R̃LEC
MT1 −λ33C̃MT1C̃T2 + λ34C̃MT1·T2 (37)

R̃LEC
MT1·T2 λ35C̃MT1C̃T2 − λ36C̃MT1·T2 (37)

−λ37C̃MT1·T2C̃M2P + λ38C̃MT1·T2·M2P

+λ39C̃MT1·T2·M2PC̃MT1

R̃LEC
MT1·T2·M2P λ40C̃MT1·T2C̃M2P − λ41C̃MT1·T2·M2P (37)

−λ42C̃MT1·T2·M2PC̃MT1

M2P, proMMP2; M2, MMP2; T2, TIMP2; VC, VEGFC; C1, collagen 1; MT1, MT1-MMP
IS interstitial space, LEC lymphatic endothelial cell

2.7 Simplification

After nondimensionalisation, we can spot several opportunities for simplifying the
model.

First, the nonlinear term in Eq. (26), ũ
(C̃C1+η2C̃VC·C1)α

, can be linearised if C̃C1 and

C̃VC·C1 differ by orders of magnitude. After factorisation, the nonlinear term becomes

ũC̃−α
C1 (1 + η2C̃VC·C1

C̃C1
)−α , which can be expanded as a Taylor series at η2C̃VC·C1

C̃C1
≈ 0.

The result is

ũC̃−α
C1

⎡
⎣1 − α

η2C̃VC·C1
C̃C1

+ α(α + 1)

2

(
η2C̃VC·C1

C̃C1

)2

− α (α + 1) (α + 2)

6

(
η2C̃VC·C1

C̃C1

)3

+ · · ·
⎤
⎦ . (46)

This expansion assumes that
∣∣∣ η2C̃VC·C1

C̃C1

∣∣∣ � 1 is true in the interstitial space domain.

Thebinding rate constant ofVEGFCand collagen I in R̃IS
VC·C1 isλ31 = 1; the unbinding
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rate constant of the same process is λ32 = 1.56 × 102. The initial concentration of
collagen I is unity, but it is zero for VEGFC bound by collagen I. It follows that
C̃VC·C1 must be orders of magnitude smaller than C̃C1 all the time. We also know that
η2 = 0.255. Taken together, the required assumption is a reasonable one to make. By
the same argument, the terms beyond unity in the square brackets can be neglected,
leading to a simplified version of Eq. (26),

∇̃ P̃ = −ũC̃−α
C1 + η3∇̃2

ũ. (47)

To make it easier to solve the model numerically, we will divide Eq. (47) by η3 and

define the simulated pressure, P̃s = P̃
η3
, resulting in

∇̃ P̃s = − ũC̃−α
C1

η3
+ ∇̃2

ũ. (48)

Second, the blood vessels are very leaky. In the equations representing the transvas-
cular fluxes of interstitial fluid, (28–30), the dimensionless vascular permeabilities,
ηDA = 1.317×1014, ηPCV = 1.317×1014, and ηDLAV = 2.634×1014, are all orders
of magnitude larger than unity. In physiological terms, the blood vessels are so leaky
that we can ignore any transvascular pressure drops. As a result, the fluxes can be
replaced by constant pressures, leading to

P̃s = 1

η3
x̃ ∈ ∂ΩDA, (49)

P̃s = 0 x̃ ∈ ∂ΩPCV, and (50)

P̃s = 0 x̃ ∈ ∂ΩDLAV. (51)

Third, we can linearise the diffusive term in Eq. (32), D̃eff
i ∇̃(

C̃i
ω

). We will start with

1
ω

=
(
1 − λ5C̃C1 − λ6C̃VC·C1

)−1
.We can apply (1+x)−1 ≈ 1−x+x2−x3+x4−· · ·

around x = 0 (Abramowitz and Stegun 1964) to obtain

[
1 +

(
−λ5C̃C1 − λ6C̃VC·C1

)]−1

= 1 −
(
−λ5C̃C1 − λ6C̃VC·C1

)
+

(
−λ5C̃C1 − λ6C̃VC·C1

)2 + · · · (52)

This approximation assumes that
∣∣∣λ5C̃C1 + λ6C̃VC·C1

∣∣∣ � 1 holds in the interstitial

space. Since λ5 = 1.98×10−1 and C̃C1 ≤ 1 are true, λ5C̃C1 � 1 must hold too. With
respect to the second term, we know that λ6 = 5.06× 10−2 and C̃VC·C1 � C̃C1, so it
is orders of magnitude less than unity. The assumption is a valid one. Also, the terms
beyond λ5C̃C1 are negligible. The result is 1

ω
≈ 1 + λ5C̃C1.

The effective diffusivity can be simplified along similar lines. The Taylor
series expansion of a general exponential function around x = 0 is ex ≈
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1 + x + x2
2! + x3

3! + · · · We can apply it to the exponential term in D̃eff
i =

λ1,i exp(−λ2,i

√
λ3C̃C1 + λ4C̃VC·C1), resulting in

exp

(
−λ2,i

√
λ3C̃C1 + λ4C̃VC·C1

)
= 1 − λ2,i

√
λ3C̃C1 + λ4C̃VC·C1

+
λ22,i

(
λ3C̃C1 + λ4C̃VC·C1

)

2! + · · · (53)

As usual, we need the magnitude of the exponent to be much smaller than one for
Taylor expansion to work. Since λ3 = 7.88×10−2 and C̃C1 ≤ 1 are true, the first term
in the square root ismuch smaller than one;λ4 = 2.01×10−2 and C̃VC·C1 � C̃C1 mean
the same for the second term. The square root

√
λ3C̃C1 + λ4C̃VC·C1 is on the order

of 1 × 10−1 or smaller. Since λ2,i is on the order of unity, this expansion is justified.

For the same reason, the terms beyond −λ2,i

√
λ3C̃C1 + λ4C̃VC·C1 in the expansion

are negligible, thus reducing the diffusivity to λ1,i

(
1 − λ2,i

√
λ3C̃C1 + λ4C̃VC·C1

)
.

The square root in λ1,i

(
1 − λ2,i

√
λ3C̃C1 + λ4C̃VC·C1

)
can be simplified even fur-

ther. Rewriting it as
√

λ3C̃C1(1 + λ4C̃VC·C1
λ3C̃C1

)1/2 and knowing that
∣∣∣λ4C̃VC·C1

λ3C̃C1

∣∣∣ � 1, we

will expand it as a Taylor series around λ4C̃VC·C1
λ3C̃C1

= 0,

√
λ3C̃C1

⎡
⎣1 + 1

2

(
λ4C̃VC·C1
λ3C̃C1

)
− 1

8

(
λ4C̃VC·C1
λ3C̃C1

)2

+ · · ·
⎤
⎦ (54)

Because the terms beyond unity are negligible, the effective diffusivity is simplified

to λ1,i

(
1 − λ2,i

√
λ3C̃C1

)
.

The simplified Eq. (32) is

∂C̃i

∂ t̃
= ∇̃ ·

[
λ1,i

(
1 − λ2,i

√
λ3C̃C1

)
∇̃

(
C̃i + λ5C̃C1C̃i

)
− λ7ũC̃i

]
+ R̃i . (55)

The simplified expressions 1
ω

≈ 1 + λ5C̃C1 and D̃eff
i = λ1,i

(
1 − λ2,i

√
λ3C̃C1

)

will also be applied to the boundary conditions.

3 Numerical Experiments

In this section, wewill solve themathematicalmodel numerically, including numerical
experiments which solve the model with modified model structures and parameters.
We will start by explaining how we will solve the model using COMSOL Multi-
physics, including convergence studies to determine the appropriate mesh and time
step sizes. Then, we will investigate the spatiotemporal dynamics of VEGFC, MMP2,
and collagen I under different circumstances.
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3.1 COMSOL Multiphysics Settings

COMSOLMultiphysics version 5.2 is a software packagewhich uses the finite element
method to solve partial differential equations numerically. First, the interstitial flow
equations, (27) and (48), will be solved alone for the initial velocity field. Second, we
will solve the time-dependent equations (32) and (35–37) together with Eqs. (27) and
(48).

We will adopt a fully coupled approach to solve the model. It means that Eqs. (27)
and (48) will be solved together in the first step, while Eqs. (27), (48), (32), and (35–
37) will be solved together in the second step. Since our equations are all nonlinear,
discretisation will result in a system of nonlinear algebraic equations. In the first step,
we will use an ‘automatic highly nonlinear (Newton)’ solver; the second step will be
tackled by the ‘constant (Newton)’ solver. The former has a minimum damping factor
of 1 × 10−8; its damping factor cannot change more than tenfold in one iteration;
it terminates when the estimated relative error is less than 0.001. The latter has a
constant damping factor of 0.9 and terminates when the estimated relative error is less
than 0.01.

The second step runs from t̃ = 0 to t̃ = 1. We will use the BDF (backward
differentiation formula) method to determine the time steps adaptively. At each time
point, the solutions at the previous one or two time steps are used to estimate the time
derivatives at the next time step, while the stability of the derivatives determines the
step size. As a starting point, wewill set amaximum step size of 0.02.Wewill optimise
this criterion after optimising our mesh setting. Themobile species are absent from the
geometry initially. They need time to permeate it, so their concentrations will change
drastically in the first few time steps. These time steps require tight control. Based
on U = 1.371 × 10−4 µm/s, it takes a particle 7.29 × 103 s to transverse 1 µm by
convection. From D∞

T2 = 1.10× 10−6 cm2/s, the highest diffusivity in our model, we
know that the equivalent time is 9.09×10−3 s for diffusion. Nondimensionalising the
shorter travelling time, 9.09× 10−3 s becomes 2.10× 10−7. We will therefore set the
initial time step at 1 × 10−7.

We will perform a convergence study to determine the appropriate mesh size. In
COMSOL Multiphysics version 5.2, there are several predefined mesh settings. We
will solve the mathematical model with the ‘fine’, ‘finer’, ‘extra fine’, and ‘extremely
fine’mesh settings.Wewill run the simulations on a desktop computer with an Intel(R)
Core(TM) i5-3570 CPU at 3.40 GHz and 16 GB of RAM. Figure 4 is the resulting
convergence plot. The interstitial flow ranges from 0.1 to 2 µm/s in speed (Swartz
and Fleury 2007). The second data point in Fig. 4 is 0.0173 µm/s, so convergence is
achieved after one refinement. Thus, the ‘finer’ mesh setting is sufficient to capture
the relevant biological information of the model. With this setting, there are 33562
elements ranging from 1.98 × 10−5 to 0.037 in nondimensionalised length.

We will next optimise the maximum size of a time step. The equations governing
ũ, (27) and (48), are static. A variable controlled by Eq. (35), an ordinary differential
equation in time, is more suitable for this convergence study. When the maximum
time step is 0.02 and the ‘finer’ mesh setting is used, the minimum C̃C1 at t̃ = 1 is
0.9991. When the maximum time step is halved to 0.01, the minimum C̃C1 at t̃ = 1
is 0.99909. The difference is 0.001%. The biologically relevant range of C̃C1 is from
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Fig. 4 (Color figure online) Convergence plot for the mesh refinement study. It shows how the maximum
velocity magnitude at t̃ = 1 changes with the number of mesh elements. The data points are the numerical
results obtained with, from left to right, the ‘fine’, ‘finer’, ‘extra fine’, and ‘extremely fine’ mesh settings
in COMSOL Multiphysics version 5.2

0.01 to 1 (Edds Jr 1958; Levick 1987; Karagiannis and Popel 2006). We can safely
assume that a maximum time step of 0.02 is appropriate.

Our geometry is symmetric in the lateral direction. The line of symmetry runs
vertically through the whole geometry and passes the centres of the blood vessels and
the LEC. We will simulate half of the geometry only to save computational cost. To
do so in COMSOL Multiphysics version 5.2, we will remove everything to the right
of the line of symmetry from the geometry. Then, we will set the normal component
of the velocity and those of the molecular fluxes to zero at the symmetry boundary.

All the simulations discussed in this paper were carried out on the aforementioned
desktop computer.With the settings described in this subsection, it took 1300s to solve
the mathematical model. Henceforth, we will call this solution the primary simulation.
The other simulations involved similar computational costs.

3.2 Diffusion and Sequestration Act Together

This subsection considers the primary simulation. First, we will determine the dom-
inant transport phenomenon. Péclet number, Pe, measures the relative importance
of convection and diffusion in a transport process. For our mathematical model, it
is UL

D∞
i

= λ7
λ1,i

. This expression is based on the characteristic velocity scale, but the

velocity magnitude varies in space. A better measure is |ũ|Pe, the maximum of which
is 0.14909 at t̃ = 1 for VEGFC. Of all the diffusible species in our model, VEGFC
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Fig. 5 (Color figure online) Spatiotemporal dynamics ofVEGFC in the primary simulation. a shows the full
concentration profiles of VEGFC at different time points. b Defines the coordinate system of the geometry
and a cut line in the y-direction. The cut line, which is in red, goes from ỹ = −0.45 to ỹ = 0.45 at x̃ = 0.
c The concentration profiles of VEGFC on this cut line at different time points. The gaps are, from left to
right, the posterior cardinal vein, the lymphatic endothelial cell, the dorsal aorta, and the dorsal longitudinal
anastomotic vessel

has the smallest λ1,i , so |ũ|Pe can only be smaller for another species. Diffusion is
the dominant mode of transport in the primary simulation.

The spatiotemporal dynamics of C̃VC are shown in Fig. 5. Throughout our time
frame of interest, C̃VC peaks at the DA and decreases away from it. This symmetric
distribution around the source is consistent with diffusion being the dominant mode
of transport. As time passes, VEGFC achieves a wider reach by diffusion. It means
that the transport of VEGFC does not equilibrate on this time scale. Because VEGFC
is constantly produced, the baseline concentration of it increases with time.

Based on the simulation results, VEGFC is unlikely to be a chemotactic factor
because it increases from the PCV to the DA and then decreases to the horizontal
myoseptum. If VEGFC is a chemoattractant, it can guide the LEC to the DA, but the
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cell will remain there instead of moving further to the horizontal myoseptum. If it is
a chemorepellent, the LEC should not migrate dorsally at all.

On the other hand, we argue that VEGFC is amorphogen for the LEC. The LEC is in
a VEGFC gradient which increases towards the DA for the entirety of the simulation.
At t̃ = 1, C̃VC rises from around 0.0001 at the dorsal end of the PCV to 0.0034 at
the ventral end of the DA, roughly a thirtyfold increase over 25 µm. It is estimated in
Gurdon and Bourillot (2001) that a cell can read a threefold change in a morphogen’s
concentration over 30 µm. This estimate is based on the responses of genes to Dpp
and activin gradients. The concentration profile of VEGFC in the primary simulation
therefore allows it to be a morphogen. On the other hand, the viable range of known
morphogens is from 1 × 10−9 to 1 × 10−11 M (Gurdon and Bourillot 2001). C̃VC
in the primary simulation is on the order of 1 × 10−13 M. Assuming sequestered
VEGFC cannot function like free VEGFC, there is insufficient VEGFC. However, our
estimated VEGFC production rate and VEGFC–collagen I binding rate constants are
crude. If we increase λDAVC tenfold in a numerical experiment, the baseline of C̃VC will
increase tenfold, but its profile’s shape will remain unchanged. This is illustrated in
Fig. 6a.

We will perform another numerical experiment by setting λ25 = 0, λ26 = 0,
λ29 = 0, λ30 = 0, λ31 = 0, and λ32 = 0. Biophysically, this means we will turn
off any interactions between VEGFC and collagen I. The simulated dynamics in this
numerical experiment are shown in Fig. 6b. Although the peak of C̃VC remains at the
DA and its baseline still increases with time, the gradients are now too flat for VEGFC
to be a morphogen. Sequestration by the ECM in a zebrafish embryo is necessary for
VEGFC to function as a morphogen when the embryo is diffusion-dominant.

To conclude, in a diffusion-dominant zebrafish embryo, VEGFC may act as a mor-
phogen, but it is not a chemotactic factor. For it to be a morphogen, it must bind to the
ECM to steepen its concentration gradients. Sufficient VEGFC must be produced too
because its production rate controls its concentration baseline.

3.3 MMP2 Acts Globally

We will now return to the primary simulation. Figure 7 summarises the simulated
behaviour of MMP2. As shown in Fig. 7a, MT1-MMP gets depleted very quickly
in the LEC. This rapid depletion of MT1-MMP means there is an initial burst of
MMP2 production followed by a prolonged period of low production; MMP2 activa-
tion requires MT1-MMP to break up MT1-MMP·TIMP2·proMMP2. The dynamics
of MMP2 production are illustrated by Fig. 7b. From Fig. 7c, we can see that MMP2
is almost homogeneously distributed. Therefore, we can consider its diffusion to be
in equilibrium on this time scale. Since MMP2 degrades collagen I, the latter has a
nearly homogeneous distribution too. This can be seen in Fig. 7d. The extent of this
degradation is less than 0.1% and therefore negligible.

However, we know that the production rates of MT1-MMP and TIMP2 are depen-
dent on the expressing cells’ environment (Noel and Sounni 2013; Sternlicht and
Werb 2001). An LEC may be able to produce more MT1-MMP or less TIMP2 when
the existing stock of MT1-MMP in its environment is depleted. Furthermore, we are
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Fig. 6 (Color figure online) Spatiotemporal dynamics of VEGFC in two numerical experiments. Both sets
of results are shown on the cut line running from ỹ = −0.45 to ỹ = 0.45 at x̃ = 0. a The simulated
dynamics when the production rate of VEGFC is increased tenfold. b The dynamics simulated without
VEGFC–collagen I interactions

only modelling one LEC when each secondary sprout consists of multiple LECs. Our
model certainly underestimates the collagenolytic effects ofMMP2.Wewill perform a
numerical experiment which replaces the activation mechanism of MMP2 with a con-
stant production rate. This simplified model ignores proMMP2, TIMP2, MT1-MMP,
and their complexes. Only the equations governing the interstitial flow, C̃M2, C̃VC,
C̃C1, and C̃VC·C1 remain. Furthermore, we will use R̃LEC

M2 = 10 and R̃IS
M2 = −λ15C̃M2

in the modified model. In Fig. 7b, the maximum R̃LEC
M2 is around 0.2, so R̃LEC

M2 = 10
is a significant increase. The results of this numerical experiment are presented in
Fig. 8. Similar to the primary simulation,MMP2 is almost homogeneously distributed.
The flat MMP2 gradients explain why collagen I degradation does not vary signifi-
cantly in space. On the other hand, the extent of degradation is significant, almost
20%.

123



724 K. Y. Wertheim, T. Roose

Fig. 7 (Color figure online) Behaviour of MMP2 in the primary simulation. a The temporal dynam-
ics of MT1-MMP and its complexes inside the lymphatic endothelial cell. The maximum concentration
of each species in the cell is plotted at each time point. b The production rate of MMP2 in the cell,
C̃MT1·T2·M2PC̃MT1. The maximum production rate in the cell is plotted at each time point. c The concen-
tration profiles of MMP2 at selected time points. d The spatiotemporal dynamics of collagen I on the cut
line running from ỹ = −0.45 to ỹ = 0.45 at x̃ = 0. MT1, MT1-MMP; T2, TIMP2; M2P, proMMP2

To conclude, MMP2 diffusion in a zebrafish trunk can be considered to be in
equilibrium on the time scale of lymphangiogenesis. When diffusion is the dominant
mode of transport, MMP2 will permeate the entire embryo and degrade collagen I
almost homogeneously. This is in agreement with the conceptual model proposed by
Karagiannis and Popel (2006). The diffusible protease MMP2 remodels the embryo’s
ECM, making it more conducive to cell migration; the LEC-bound protease MT1-
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Fig. 8 (Color figure online) Behaviour of MMP2 in a numerical experiment which replaces the activation
mechanism of MMP2 with a constant production rate. a The concentration profiles of MMP2 at selected
time points. b The spatiotemporal dynamics of collagen I on the cut line running from ỹ = −0.45 to
ỹ = 0.45 at x̃ = 0

MMP degrades the collagen I around the LECs, thereby triggering LEC migration.
Another conclusion is aboutTIMP2. In the primary simulation,MMP2-TIMP2binding
does not affect the homogeneous distribution of MMP2, so TIMP2 diffusion is also
in equilibrium . It only changes the baseline concentration of MMP2, not its spatial
distribution. In this paper, MMP2-TIMP2 binding is only considered in the primary
simulation.
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3.4 Convection and Asymmetry

The biologically relevant range of CC1 is from 1.59× 10−6 M to 3.50× 10−4 M. Our
choice of CC1,s is 3.50 × 10−4 M, so the initial condition C̃C1 = 1 falls at the upper
end of the range.

Wewill carry out a numerical experimentwhere the initial C̃C1 is uniformly reduced
to 0.1. We will ignore collagen I degradation by MMP2 and MMP2-TIMP2 binding
in the modified model, meaning it will only retain the interstitial flow Eqs. (27) and
(48), as well as the governing equations for free VEGFC, collagen I, and VEGFC
bound to collagen I. The two neglected phenomena can only reduce the baseline
of C̃C1 in a diffusion-dominant zebrafish embryo. Our manual reduction in the ini-
tial C̃C1 has the same effect. A reduction in C̃C1 will affect both the transport and
kinetic terms in our model. On the other hand, there are ECM components other
than collagen I in a real zebrafish embryo; changing the amount of collagen I present
will affect the transport properties, but the ability of components like heparan sul-
phate to sequester VEGFC will not be affected. For this reason, we will modify the
model to control the kinetic properties. Since we are lowering C̃C1 uniformly by
an order of magnitude, we will increase the binding terms of VEGFC and colla-
gen I by an order of magnitude. It means the reaction terms will become R̃IS

VC =
−10λ25C̃VCC̃C1 + λ26C̃VC·C1 − λ27C̃VC, R̃IS

C1 = −10λ29C̃VCC̃C1 + λ30C̃VC·C1, and
R̃IS
VC·C1 = 10C̃VCC̃C1 − λ32C̃VC·C1.
Then, we will repeat the numerical experiment after switching off the interactions

between VEGFC and collagen I. This means we will further simplify the model by
eliminating the governing equations for collagen I and bound VEGFC. This modified
model will only have the interstitial flow Eqs. (27) and (48) in addition to the reaction–
diffusion–convection equation governing C̃VC. The reaction term R̃IS

VC is simplified to
−λ27C̃VC and C̃C1 is constant at 0.1.

Figure 9 summarises the results of these two numerical experiments with the initial
condition C̃C1 = 0.1. From Fig. 9a, we can infer that convectionmarginally dominates
diffusion in the centre of the embryo, but diffusion still dominates in the periphery.
Figure 9b and c is very similar to their counterparts in Fig. 5 in terms of the baseline of
C̃VC, its spatial variations, and the steepness of its gradients. When VEGFC does not
bind to collagen I, its spatiotemporal dynamics in Fig. 9d are completely different. The
interstitial flow pushes most of the embryo’s VEGFC to the periphery. The baseline of
C̃VC is two orders of magnitude higher than when VEGFC is sequestered by collagen
I. However, the LEC is in a VEGFC gradient which only decreases twofold from the
PCV to the DA. This shallow gradient is unsuitable for morphogenetic functions. Its
directionality does not allow VEGFC to guide the migrating LEC to the horizontal
myoseptum either.

We hypothesise that the pressure field is the key regulator of VEGFC’s spatiotem-
poral dynamics in the last numerical experiment. To test this hypothesis, wewill repeat
it with a steeper and asymmetric pressure field which is given by

P̃s = 1

η3
x̃ ∈ ∂ΩDA, (56)
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Fig. 9 (Color figure online) Spatiotemporal dynamics of VEGFC in a marginally convection-dominant
zebrafish embryo. The initial C̃C1 is 0.1 and collagen I does not degrade. a That convection is marginally
dominant in the central region of the embryo, but diffusion is still dominant in the periphery. b The con-
centration profiles of VEGFC at selected time points. VEGFC is sequestered by collagen I in this case. c
Plots the data of (b) on the cut line running from ỹ = −0.45 to ỹ = 0.45 at x̃ = 0. d The spatiotemporal
dynamics of VEGFC on the same cut line when VEGFC does not interact with collagen I

P̃s = −0.5

η3
x̃ ∈ ∂ΩPCV, and (57)

P̃s = 0.8

η3
x̃ ∈ ∂ΩDLAV. (58)

Figure 10 illustrates the resulting dynamics of C̃VC. Steepening the pressure gradi-
ent from the DA to the PCV steepens the gradient of C̃VC in that region too. It is now a
threefold gradient, so VEGFCmay act as a morphogen for the LEC. The pressure drop
from the DA to the PCV is larger than that from the DA to the DLAV. The interstitial
flow will thus be faster on the ventral side of the DA. VEGFC goes with the interstitial
flow, forming an asymmetric concentration field. If VEGFC is a chemorepellent, it
can guide the LEC down the gradient towards the horizontal myoseptum. Consider-
ing VEGFC promotes survival, proliferation, and migration in LECs, it is unlikely
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Fig. 10 (Color figure online) Spatiotemporal dynamics of VEGFC in an asymmetric pressure field. The
initial C̃C1 is 0.1, and collagen I does not degrade. Convection is marginally dominant in the central region
of the embryo, while diffusion dominates in the periphery. VEGFC does not interact with collagen I. a
A collection of VEGFC concentration profiles at selected time points. b The spatiotemporal dynamics of
VEGFC on the cut line running from ỹ = −0.45 to ỹ = 0.45 at x̃ = 0

to be one. Nevertheless, the pressure field in the numerical experiment is arbitrary.
Reversing its direction will allow VEGFC to chemoattract the LEC to its destination.

To conclude, there is a tension between convection and VEGFC sequestration by
the ECM in an embryo. Even when convection is marginally dominant in the embryo,
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Fig. 11 (Color figure online) Positive feedback loop between an asymmetric interstitial flow and the
collagenolytic action of MMP2. Initially, C̃C1 is 0.1 and convection is marginally dominant in the central
region of the embryo, but diffusion dominates in the periphery. MMP2 is produced at a constant rate to
degrade collagen I. VEGFC is not sequestered by collagen I. The pressure field is asymmetric. a The
spatiotemporal dynamics of MMP2. b The spatiotemporal dynamics of collagen I. c That convection
becomes increasingly dominant in the region ventral to the DA. d The spatiotemporal dynamics of VEGFC
on the cut line running from ỹ = −0.45 to ỹ = 0.45 at x̃ = 0

its interstitial flow cannot influence VEGFC when the latter is sequestered by the
ECM. When VEGFC is influenced by the flow, the pressure field in the embryo is
the key determinant of its spatiotemporal dynamics. Its steepness determines whether
VEGFC can be a morphogen for the migrating LECs in the embryo; its directionality
determines whether VEGFC can guide their migration by chemotaxis.

3.5 Channelisation

Section 3.3 concludes that the spatial variations of MMP2 are small in a diffusion-
dominant embryo. MMP2 will gradually render such an embryo convection-dominant
without introducing significant spatial effects. The embryo described in Sect. 3.4 is
convection-dominant through its initial C̃C1. Section 3.4 concludes that asymmetric
and steep concentration gradients are possible after the manual switch from diffusion
to convection. The prerequisites are an asymmetric and steep pressure field and an
ECMwhich does not sequester the diffusing species under consideration. However, we
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have not considered howMMP2 fits into the picture after it takes a diffusion-dominant
embryo into its convection-dominant regime. It makes us wonder whether MMP2 will
behave differently in a convection-dominant embryo. To investigate this possibility,
we will perform a numerical experiment. Apart from the interstitial flow Eqs. (27) and
(48), we will solve the governing equations for MMP2, VEGFC, and collagen I in this
numerical experiment. MMP2 will be produced at a constant rate like the numerical
experiment in Sect. 3.3. The reaction terms are R̃LEC

M2 = 10, R̃IS
M2 = −λ15C̃M2,

R̃IS
VC = −λ27C̃VC, and R̃IS

C1 = −λ28C̃M2C̃C1

KM2,C1
M +CC1,sC̃C1

. We will also use the asymmetric

pressure field given by equations (56), (57), and (58). We will not model MMP2-
TIMP2 binding because MMP2 and TIMP2 are produced at the same source and
have similar diffusion coefficients, so this phenomenon will only affect the baseline
concentration of MMP2, not its spatial distribution.

Figure 11 summarises the simulation results of this numerical experiment. There
is a positive feedback loop between convection and ECM remodelling. Due to the
asymmetric interstitial flow, MMP2 is concentrated at the ventral end of the embryo.
This asymmetry in C̃M2 results in preferential degradation of collagen I at the ventral
end, resulting in a gradient of C̃C1 whichdecreases ventrally from theDA.This gradient
will strengthen the interstitial flow in that direction to complete the feedback loop. The
impact of this loop onVEGFC is shown in Fig. 11d. Its concentration gradient steepens
with time because it also follows the ever increasing interstitial flow. If VEGFC is a
morphogen and chemotactic factor for LECs, this positive feedback loop enhances
these functions.

Our idealised zebrafish embryo is too thin for any spatial effects to show up in the
x-direction. Considering our dimensions are only estimates, we will repeat the last
numerical experiment with a triply widened embryo. The modified geometry will go
from x̃ = −0.15 (outer boundary) to x̃ = 0 (line of symmetry). The simulation results
are in Fig. 12. Figure 12a, between the DA and the PCV, clearly shows some variations
in C̃C1 in the x-direction. Therefore, we will focus on the cut line from x̃ = −0.15 to
x̃ = 0 at ỹ = −0.23, a point between the LEC and the PCV. Figure 12b illustrates that
a channel with low C̃C1 forms gradually in the plane where the LEC and the blood
vessels are located. Figure 12c indicates that VEGFC accumulates in this channel. We
know that VEGFC is a growth factor for LECs, while collagen I is a physical barrier
to their migration. Therefore, they are likely to stay in the channel. Channelisation
ensures the LECs will migrate in the y-direction and the lymphatic vessels they form
will lie in the same plane as the blood vessels.

To conclude, an asymmetric interstitial flow and the collagenolytic action ofMMP2
form a positive feedback loop in a zebrafish embryo. The outcome is a channel of low
C̃C1 and high C̃VC near the blood vessels’ plane. The channel can keep the embryo’s
LECs migrating on a ventral–dorsal path, so the resulting lymphatic vessels will stay
close to the blood vessels.

3.6 Concentration Gradients Vanish When Collagen I is Insufficient

Finally, we will consider the case where the initial C̃C1 is 0.01. Since there is so little
collagen I to begin with, we will not consider its degradation by MMP2 and with-
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Fig. 12 (Color figure online) Channels form in collagen I due to an asymmetric interstitial flow and the
collagenolytic action of MMP2. Initially, C̃C1 is 0.1 and convection is marginally dominant in the central
region of the embryo, but diffusion dominates in the periphery. MMP2 is produced at a constant rate to
degrade collagen I. VEGFC is not sequestered by collagen I. The pressure field is asymmetric. a The
concentration profile of collagen I at t̃ = 1. b The spatiotemporal dynamics of collagen I on the cut line
running from x̃ = −0.15 (outer boundary) to x̃ = 0 (line of symmetry) at ỹ = −0.23. This cut line is
between the posterior cardinal vein and the lymphatic endothelial cell. c The spatiotemporal dynamics of
VEGFC on the same cut line. d The aforementioned cut line from x̃ = −0.15 to x̃ = 0 at ỹ = −0.23

out MMP2, and we will not consider TIMP2 either. Therefore, the modified model
will only include the interstitial flow Eqs. (27) and (48) and the governing equa-
tions for VEGFC, collagen I, and VEGFC bound to collagen I. To control for the
kinetic properties in our model, we will increase the binding terms of VEGFC and
collagen I by two orders of magnitude. Therefore, the reaction terms are R̃IS

VC =
−100λ25C̃VCC̃C1 + λ26C̃VC·C1 − λ27C̃VC, R̃IS

C1 = −100λ29C̃VCC̃C1 + λ30C̃VC·C1,
and R̃IS

VC·C1 = 100C̃VCC̃C1 − λ32C̃VC·C1. We can further simplify the effective diffu-

sivity of VEGFC too. The term inside the brackets in λ1,VC

(
1 − λ2,VC

√
λ3C̃C1

)
is

between 0.94 and 1 now. Approximating it as unity, we will retain λ1,VC only.
Figure 13a and b summarises the simulation results of this numerical experiment.

The |ũ|Pe profile shows that convection is orders of magnitude more important than
diffusion in the central region of the embryo. As a result, the interstitial flow flushes
all the VEGFC in the embryo to the periphery where it forms boundary layers. These

123



732 K. Y. Wertheim, T. Roose

Fig. 13 (Color figure online) Concentration gradients cannot formwith insufficient collagen I. In these two
numerical experiments, the initial C̃C1 is 0.01 and there is no collagen I degradation. a The central region of
the embryo is overwhelmingly dominated by convection although diffusion dominates in the periphery. b
The spatiotemporal dynamics of VEGFC on the cut line running from ỹ = −0.45 to ỹ = 0.45 at x̃ = 0. In
this numerical experiment, VEGFC is sequestered by collagen I. c The same dynamics as (b) when VEGFC
does not interact with collagen I

gradients cannot influence the LEC in the central region. We will repeat the numerical
experiment by neglecting the interactions between VEGFC and collagen I. This means
only the interstitial flow equations and the governing equation for VEGFC will be
solved, R̃IS

VC = −λ27C̃VC, and C̃C1 is constant at 0.01. Figure 13c shows the resulting
spatiotemporal dynamics of VEGFC. The central regions of Fig. 13b and c are the
same, proving that sequestration by collagen I cannot protect VEGFC from such a
powerful interstitial flow.

To conclude, when collagen I is insufficient, the interstitial flow in a zebrafish
embryo will clear its central region of VEGFC. As a result, VEGFC cannot form
a suitable concentration gradient to guide the embryo’s LECs as a morphogen or
a chemotactic factor. When the interstitial flow is strong enough, sequestration by
collagen I cannot protect VEGFC from going with the flow. However, our pressure
field is only an estimate. The ECM contains components other than collagen I too.
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Our hydraulic conductivity and interstitial flow rate in this subsection are probably
overestimates and not representative of zebrafish embryos.

4 Discussion

Our study proposes a model of the spatiotemporal dynamics of VEGFC in the trunk
of a zebrafish embryo. The model parameters come from different studies. Many of
them do not have in vivo sources, and many more do not pertain to zebrafish embryos.
Some of them are simply unavailable, such as our use of a reported VEGF production
rate as a surrogate for the required VEGFC production rate. To complicate matters,
the conditions in an embryo are dynamic, so the parameters should not be static as
they are in our model. Therefore, we cannot use the model to simulate what actually
happens in a zebrafish embryo. Nonetheless, our simulations are scenarios within the
realms of possibility. There are three scenarios inwhichVEGFCcanbe amorphogenor
chemotactic factor for the LECs migrating from the PCV to the horizontal myoseptum
of a zebrafish embryo.

4.1 Scenario 1

This scenario is a diffusion-dominant embryo where VEGFC is sequestered by the
ECM. Under these circumstances, VEGFC will have a concentration profile which
peaks at and decreases symmetrically from its source, the DA. The gradient between
the PCV and the DA is perfect for VEGFC to act as a morphogen for the migrating
LECs. However, the symmetry of the profile makes VEGFC an unlikely candidate for
their chemotactic factor.

In general, the combination of diffusion and sequestration by an ECMcreates short-
range, steep, and symmetric gradients of mobile species.

4.2 Scenario 2

Scenario 2 is an embryo marginally dominated by convection. When VEGFC binds
to the embryo’s ECM, it is protected from the interstitial flow therein. VEGFC will
behave like it does in scenario 1.

4.3 Scenario 3

Scenario 3 is also an embryo marginally dominated by convection, but VEGFC does
not bind to the ECM. In this case, the pressure field is the key factor regulating the
behaviour of VEGFC. A sufficiently steep pressure field will establish a VEGFC con-
centration gradient appropriate for morphogenetic functions. An asymmetric pressure
field will give a directionality to the gradient, thus allowing VEGFC to guide cell
migration by chemotaxis.
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In general, a steep and asymmetric pressure field will create steep, asymmetric,
and embryo-wide concentration gradients of mobile species. The prerequisites are
convection being marginally dominant and a nonbinding ECM.

4.4 Collagen I Degradation is a Control Mechanism

Collagen I concentration is the key variable that determines the dominant mode of
transport, hence the scenario which applies to an embryo. Collagen I degradation by
MMP2 is therefore an important means to control the behaviour of VEGFC. There are
two ways MMP2 can exert its influence.

First, it allows an embryo to switch back and forth between the three scenar-
ios. When diffusion is dominant, the distribution of MMP2 in the embryo is almost
homogeneous. Collagen I will degrade almost uniformly until convection takes over.
Conversely, although ourmodel cannot demonstrate this feature, the embryo can lower
MMP2 production and increase collagen I production, thus tilting the balance in diffu-
sion’s favour. This control mechanism is useful for patterning the embryo. The embryo
can start in scenario 3 where embryo-wide morphogen gradients divide it into seg-
ments of different cell types. Then, it can switch to scenario 1 where local gradients
will fine-tune the development of each segment.

Second, MMP2 and an asymmetric interstitial flow can form a positive feedback
mechanism in scenario 3. The flow goes asymmetrically on the ventral–dorsal axis. It
will concentrateMMP2 in one direction on this axis. Collagen I will as a result degrade
preferentially in this direction, further skewing the interstitial flow.VEGFCwill also go
with the flow, thus steepening its own concentration gradient. The increased steepness
makes VEGFC a more effective morphogen, while the increased asymmetry makes
it a more effective chemotactic factor. Because collagen I degrades preferentially on
one axis, a channel of abundant VEGFC and scarce collagen I will form along this
axis. Because VEGFC is a growth factor and collagen I is a barrier to cell migration,
the embryo’s LECs will migrate in the channel. Channelisation therefore ensures LEC
migration occurs on the ventral–dorsal axis.

Finally, when collagen I is insufficient, the embryo will be overwhelmingly domi-
nated by convection. The interstitial flow will be so strong that no gradients of mobile
species can form in the embryo. This scenario is unlikely to occur in an embryo,
however.

4.5 Future Work

The developmental processes of living organisms are shaped by evolution. The fact
that VEGFC is distributed like a morphogen in multiple scenarios suggests that it is
actually one.On theother hand, even ifVEGFC is a chemoattractant or chemorepellent,
it can only perform its function in an asymmetric pressure field in scenario 3. A
different molecular species is probably required to guide the PCV-derived LECs to the
horizontal myoseptum in a zebrafish embryo. However, to validate our predictions, we
need to comprehend the intracellular responses of an LEC to a concentration gradient
of VEGFC.
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Even if a species other than VEGFC induces the PCV-derived LECs to differenti-
ate, it probably forms an appropriate concentration profile in one of the scenarios this
study proposes. The proposed control mechanisms probably regulate its spatiotempo-
ral dynamics too. More generally, these scenarios and mechanisms are frameworks
within which embryonic development and tissue regeneration can be understood.

The mathematical model per se is a valuable tool for mathematical and theoretical
biologists. To the best of our knowledge, it is the first mathematical model that consid-
ers an interstitial flow, a remodelling ECM, and the ECM’s ability to sequester amobile
species together. Its solution costs very little computationally, so it can be extended to
more complex geometries, larger domains, and higher dimensions. By changing the
model geometry, its biochemical reaction network, and the model parameters, one can
simulate the dynamics of a diverse range of biological phenomena.
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