91 research outputs found

    Slicing across Kingdoms: Regeneration in Plants and Animals

    Get PDF
    Multicellular organisms possessing relatively long life spans are subjected to diverse, constant, and often intense intrinsic and extrinsic challenges to their survival. Animal and plant tissues wear out as part of normal physiological functions and can be lost to predators, disease, and injury. Both kingdoms survive this wide variety of insults by strategies that include the maintenance of adult stem cells or the induction of stem cell potential in differentiated cells. Repatterning mechanisms often deploy embryonic genes, but the question remains in both plants and animals whether regeneration invokes embryogenesis, generic patterning mechanisms, or unique circuitry comprised of well-established patterning genes

    Predicting genome-wide redundancy using machine learning

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Gene duplication can lead to genetic redundancy, which masks the function of mutated genes in genetic analyses. Methods to increase sensitivity in identifying genetic redundancy can improve the efficiency of reverse genetics and lend insights into the evolutionary outcomes of gene duplication. Machine learning techniques are well suited to classifying gene family members into redundant and non-redundant gene pairs in model species where sufficient genetic and genomic data is available, such as <it>Arabidopsis thaliana</it>, the test case used here.</p> <p>Results</p> <p>Machine learning techniques that combine multiple attributes led to a dramatic improvement in predicting genetic redundancy over single trait classifiers alone, such as BLAST E-values or expression correlation. In withholding analysis, one of the methods used here, Support Vector Machines, was two-fold more precise than single attribute classifiers, reaching a level where the majority of redundant calls were correctly labeled. Using this higher confidence in identifying redundancy, machine learning predicts that about half of all genes in <it>Arabidopsis </it>showed the signature of predicted redundancy with at least one but typically less than three other family members. Interestingly, a large proportion of predicted redundant gene pairs were relatively old duplications (e.g., Ks > 1), suggesting that redundancy is stable over long evolutionary periods.</p> <p>Conclusions</p> <p>Machine learning predicts that most genes will have a functionally redundant paralog but will exhibit redundancy with relatively few genes within a family. The predictions and gene pair attributes for <it>Arabidopsis </it>provide a new resource for research in genetics and genome evolution. These techniques can now be applied to other organisms.</p

    Regulation of Leaf Maturation by Chromatin-Mediated Modulation of Cytokinin Responses

    Get PDF
    SummaryPlant shoots display indeterminate growth, while their evolutionary decedents, the leaves, are determinate. Determinate leaf growth is conditioned by the CIN-TCP transcription factors, which promote leaf maturation and are negatively regulated by miR319 in leaf primordia. Here we show that CIN-TCPs reduce leaf sensitivity to cytokinin (CK), a phytohormone implicated in inhibition of differentiation in the shoot. We identify the SWI/SNF chromatin remodeling ATPase BRAHMA (BRM) as a genetic mediator of CIN-TCP activities and CK responses. An interactome screen further revealed that SWI/SNF complex components including BRM preferentially interacted with basic-helix-loop-helix (bHLH) transcription factors and the bHLH-related CIN-TCPs. Indeed, TCP4 and BRM interacted in planta. Both TCP4 and BRM bound the promoter of an inhibitor of CK responses, ARR16, and induced its expression. Reconstituting ARR16 levels in leaves with reduced CIN-TCP activity restored normal growth. Thus, CIN-TCP and BRM together promote determinate leaf growth by stage-specific modification of CK responses

    A map of cell type-specific auxin responses

    Get PDF
    In plants, changes in local auxin concentrations can trigger a range of developmental processes as distinct tissues respond differently to the same auxin stimulus. However, little is known about how auxin is interpreted by individual cell types. We performed a transcriptomic analysis of responses to auxin within four distinct tissues of the Arabidopsis thaliana root and demonstrate that different cell types show competence for discrete responses. The majority of auxin-responsive genes displayed a spatial bias in their induction or repression. The novel data set was used to examine how auxin influences tissue-specific transcriptional regulation of cell-identity markers. Additionally, the data were used in combination with spatial expression maps of the root to plot a transcriptomic auxin-response gradient across the apical and basal meristem. The readout revealed a strong correlation for thousands of genes between the relative response to auxin and expression along the longitudinal axis of the root. This data set and comparative analysis provide a transcriptome-level spatial breakdown of the response to auxin within an organ where this hormone mediates many aspects of development

    Quantitation of Cellular Dynamics in Growing Arabidopsis Roots with Light Sheet Microscopy

    Get PDF
    To understand dynamic developmental processes, living tissues must be imaged frequently and for extended periods of time. Root development is extensively studied at cellular resolution to understand basic mechanisms underlying pattern formation and maintenance in plants. Unfortunately, ensuring continuous specimen access, while preserving physiological conditions and preventing photo-damage, poses major barriers to measurements of cellular dynamics in indeterminately growing organs such as plant roots. We present a system that integrates optical sectioning through light sheet fluorescence microscopy with hydroponic culture that enables us to image at cellular resolution a vertically growing Arabidopsis root every few minutes and for several consecutive days. We describe novel automated routines to track the root tip as it grows, track cellular nuclei and identify cell divisions. We demonstrate the system's capabilities by collecting data on divisions and nuclear dynamics.Comment: * The first two authors contributed equally to this wor

    Cell-by-cell dissection of phloem development links a maturation gradient to cell specialization

    Get PDF
    Publisher Copyright: Copyright © 2021 The Authors, some rights reserved;In the plant meristem, tissue-wide maturation gradients are coordinated with specialized cell networks to establish various developmental phases required for indeterminate growth. Here, we used single-cell transcriptomics to reconstruct the protophloem developmental trajectory from the birth of cell progenitors to terminal differentiation in the Arabidopsis thaliana root. PHLOEM EARLY DNA-BINDING-WITH-ONE-FINGER (PEAR) transcription factors mediate lineage bifurcation by activating guanosine triphosphatase signaling and prime a transcriptional differentiation program. This program is initially repressed by a meristem-wide gradient of PLETHORA transcription factors. Only the dissipation of PLETHORA gradient permits activation of the differentiation program that involves mutual inhibition of early versus late meristem regulators. Thus, for phloem development, broad maturation gradients interface with cell-type-specific transcriptional regulators to stage cellular differentiation.Peer reviewe
    corecore