21,162 research outputs found

    High-resolution width-modulated pulse rebalance electronics for strapdown gyroscopes and accelerometers

    Get PDF
    Three different rebalance electronic loops were designed, implemented, and evaluated. The loops were width-modulated binary types using a 614.4 kHz keying signal; they were developed to accommodate the following three inertial sensors with the indicated resolution values: (1) Kearfott 2412 accelerometer - resolution = 260 micro-g/data pulse, (2) Honeywell GG334 gyroscope - resolution = 3.9 milli-arc-sec/data pulse, (3) Kearfott 2401-009 accelerometer - resolution = 144 milli-g/data pulse. Design theory, details of the design implementation, and experimental results for each loop are presented

    Stage progression and neurological symptoms in Trypanosoma brucei rhodesiense sleeping sickness: role of the CNS inflammatory response

    Get PDF
    Background: Human African trypanosomiasis progresses from an early (hemolymphatic) stage, through CNS invasion to the late (meningoencephalitic) stage. In experimental infections disease progression is associated with neuroinflammatory responses and neurological symptoms, but this concept requires evaluation in African trypanosomiasis patients, where correct diagnosis of the disease stage is of critical therapeutic importance. Methodology/Principal Findings: This was a retrospective study on a cohort of 115 T.b.rhodesiense HAT patients recruited in Eastern Uganda. Paired plasma and CSF samples allowed the measurement of peripheral and CNS immunoglobulin and of CSF cytokine synthesis. Cytokine and immunoglobulin expression were evaluated in relation to disease duration, stage progression and neurological symptoms. Neurological symptoms were not related to stage progression (with the exception of moderate coma). Increases in CNS immunoglobulin, IL-10 and TNF-α synthesis were associated with stage progression and were mirrored by a reduction in TGF-β levels in the CSF. There were no significant associations between CNS immunoglobulin and cytokine production and neurological signs of disease with the exception of moderate coma cases. Within the study group we identified diagnostically early stage cases with no CSF pleocytosis but intrathecal immunoglobulin synthesis and diagnostically late stage cases with marginal CSF pleocytosis and no detectable trypanosomes in the CSF. Conclusions: Our results demonstrate that there is not a direct linkage between stage progression, neurological signs of infection and neuroinflammatory responses in rhodesiense HAT. Neurological signs are observed in both early and late stages, and while intrathecal immunoglobulin synthesis is associated with neurological signs, these are also observed in cases lacking a CNS inflammatory response. While there is an increase in inflammatory cytokine production with stage progression, this is paralleled by increases in CSF IL-10. As stage diagnostics, the CSF immunoglobulins and cytokines studied do not have sufficient sensitivity to be of clinical value

    Mixed Heisenberg Chains. I. The Ground State Problem

    Full text link
    We consider a mechanism for competing interactions in alternating Heisenberg spin chains due to the formation of local spin-singlet pairs. The competition of spin-1 and spin-0 states reveals hidden Ising symmetry of such alternating chains.Comment: 7 pages, RevTeX, 4 embedded eps figures, final versio

    New Precision Electroweak Tests of SU(5) x U(1) Supergravity

    Full text link
    We explore the one-loop electroweak radiative corrections in SU(5)×U(1)SU(5)\times U(1) supergravity via explicit calculation of vacuum-polarization and vertex-correction contributions to the ϵ1\epsilon_1 and ϵb\epsilon_b parameters. Experimentally, these parameters are obtained from a global fit to the set of observables Γl,Γb,AFBl\Gamma_{l}, \Gamma_{b}, A^{l}_{FB}, and MW/MZM_W/M_Z. We include q2q^2-dependent effects, which induce a large systematic negative shift on ϵ1\epsilon_{1} for light chargino masses (m_{\chi^\pm_1}\lsim70\GeV). The (non-oblique) supersymmetric vertex corrections to \Zbb, which define the ϵb\epsilon_b parameter, show a significant positive shift for light chargino masses, which for tanβ2\tan\beta\approx2 can be nearly compensated by a negative shift from the charged Higgs contribution. We conclude that at the 90\%CL, for m_t\lsim160\GeV the present experimental values of ϵ1\epsilon_1 and ϵb\epsilon_b do not constrain in any way SU(5)×U(1)SU(5)\times U(1) supergravity in both no-scale and dilaton scenarios. On the other hand, for m_t\gsim160\GeV the constraints on the parameter space become increasingly stricter. We demonstrate this trend with a study of the m_t=170\GeV case, where only a small region of parameter space, with \tan\beta\gsim4, remains allowed and corresponds to light chargino masses (m_{\chi^\pm_1}\lsim70\GeV). Thus SU(5)×U(1)SU(5)\times U(1) supergravity combined with high-precision LEP data would suggest the presence of light charginos if the top quark is not detected at the Tevatron.Comment: LaTeX, 11 Pages+4 Figures(not included), the figures available upon request as an uuencoded file(0.4MB) or 4 PS files from [email protected], CERN-TH.7078/93, CTP-TAMU-68/93, ACT-24/9

    Early-type stars observed in the ESO UVES Paranal Observatory Project - V. Time-variable interstellar absorption

    Full text link
    The structure and properties of the diffuse interstellar medium (ISM) on small scales, sub-au to 1 pc, are poorly understood. We compare interstellar absorption-lines, observed towards a selection of O- and B-type stars at two or more epochs, to search for variations over time caused by the transverse motion of each star combined with changes in the structure in the foreground ISM. Two sets of data were used: 83 VLT- UVES spectra with approximately 6 yr between epochs and 21 McDonald observatory 2.7m telescope echelle spectra with 6 - 20 yr between epochs, over a range of scales from 0 - 360 au. The interstellar absorption-lines observed at the two epochs were subtracted and searched for any residuals due to changes in the foreground ISM. Of the 104 sightlines investigated with typically five or more components in Na I D, possible temporal variation was identified in five UVES spectra (six components), in Ca II, Ca I and/or Na I absorption-lines. The variations detected range from 7\% to a factor of 3.6 in column density. No variation was found in any other interstellar species. Most sightlines show no variation, with 3{\sigma} upper limits to changes of the order 0.1 - 0.3 dex in Ca II and Na I. These variations observed imply that fine-scale structure is present in the ISM, but at the resolution available in this study, is not very common at visible wavelengths. A determination of the electron densities and lower limits to the total number density of a sample of the sightlines implies that there is no striking difference between these parameters in sightlines with, and sightlines without, varying components.Comment: 19 pages, 11 figures, accepted for publication in MNRA

    Remarks on geometric entropy

    Full text link
    The recently discussed notion of geometric entropy is shown to be related to earlier calculations of thermal effects in Rindler space. The evaluation is extended to de Sitter space and to a two-dimensional black hole.Comment: 7p.,uses jyTeX,MUTP/94/

    Tunneling and transmission resonances of a Dirac particle by a double barrier

    Full text link
    We calculate the tunneling process of a Dirac particle across two square barriers separated a distance dd, as well as the scattering by a double cusp barrier where the centers of the cusps are separated a distance larger than their screening lengths. Using the scattering matrix formalism, we obtain the transmission and reflection amplitudes for the scattering processes of both configurations. We show that, the presence of transmission resonances modifies the Lorentizian shape of the energy resonances and induces the appearance of additional maxima in the transmission coefficient in the range of energies where transmission resonances occur. We calculate the Wigner time-delay and show how their maxima depend on the position of the transmission resonance.Comment: To appear in Physica Script

    Hepatitis B virus DNA integration as a novel biomarker of hepatitis B virus-mediated pathogenetic properties and a barrier to the current strategies for hepatitis B virus cure.

    Get PDF
    Chronic infection with Hepatitis B Virus (HBV) is a major cause of liver-related morbidity and mortality worldwide. HBV-DNA integration into the human genome is recognized as a frequent event occurring during the early phases of HBV infection and characterizing the entire course of HBV natural history. The development of refined molecular biology technologies sheds new light on the functional implications of HBV-DNA integration into the human genome, including its role in the progression of HBV-related pathogenesis and in triggering the establishment of pro-oncogenic mechanisms, promoting the development of hepatocellular carcinoma. The present review provides an updated and comprehensive overview of the current body of knowledge on HBV-DNA integration, focusing on the molecular mechanisms underlying HBV-DNA integration and its occurrence throughout the different phases characterizing the natural history of HBV infection. Furthermore, here we discuss the main clinical implications of HBV integration as a biomarker of HBV-related pathogenesis, particularly in reference to hepatocarcinogenesis, and how integration may act as a barrier to the achievement of HBV cure with current and novel antiviral therapies. Overall, a more refined insight into the mechanisms and functionality of HBV integration is paramount, since it can potentially inform the design of ad hoc diagnostic tools with the ability to reveal HBV integration events perturbating relevant intracellular pathways and for identifying novel therapeutic strategies targeting alterations directly related to HBV integration

    Comparing placentas from normal and abnormal pregnancies

    Get PDF
    This report describes work carried out at a Mathematics-in-Medicine Study Group. It is believed that placenta shape villous network characteristics are strongly linked to the placenta’s efficiency, and hence to pregnancy outcome. We were asked to consider mathematical ways to describe the shape and other characteristics of a placenta, as well as forming mathematical models for placenta development. In this report we propose a number of possible measure of placental shape, form, and efficiency, which can be computed from images already obtained. We also consider various models for the early development of placentas and the growth of the villous tree
    corecore