395 research outputs found
Al-Battani's Astrological History of the Prophet and the Early Caliphate
This article presents the last major project that Edward S. Kennedy (1912-2009) worked on towards the end of his long and productive life. Finished by three "colleagues and former students", it gives a full edition with English translation of the astrological history of the Prophet and the early caliphate by al-Battānī (ca. 900), which is extant in a unique manuscript in Ankara. The commentary includes definitions of most relevant astrological concepts, analyses and recomputations of the 21 horoscopes given by al-Battānī, and a detailed discussion of his astrological interpretations
Impurity state in Haldane gap for S=1 Heisenberg antiferromagnetic chain with bond doping
Using a new impurity density matrix renormalization group scheme, we
establish a reliable picture of how the low lying energy levels of a
Heisenberg antiferromagnetic chain change {\it quantitatively} upon bond
doping. A new impurity state gradually occurs in the Haldane gap as ,
while it appears only if with as . The
system is non-perturbative as . This explains the
appearance of a new state in the Haldane gap in a recent experiment on
YCaBaNiO [J.F. DiTusa, et al., Phys. Rev. Lett. 73 1857(1994)].Comment: 4 pages of uuencoded gzip'd postscrip
A class of ansatz wave functions for 1D spin systems and their relation to DMRG
We investigate the density matrix renormalization group (DMRG) discovered by
White and show that in the case where the renormalization eventually converges
to a fixed point the DMRG ground state can be simply written as a ``matrix
product'' form. This ground state can also be rederived through a simple
variational ansatz making no reference to the DMRG construction. We also show
how to construct the ``matrix product'' states and how to calculate their
properties, including the excitation spectrum. This paper provides details of
many results announced in an earlier letter.Comment: RevTeX, 49 pages including 4 figures (macro included). Uuencoded with
uufiles. A complete postscript file is available at
http://fy.chalmers.se/~tfksr/prb.dmrg.p
A Gaussian Theory of Superfluid--Bose-Glass Phase Transition
We show that gaussian quantum fluctuations, even if infinitesimal, are
sufficient to destroy the superfluidity of a disordered boson system in 1D and
2D. The critical disorder is thus finite no matter how small the repulsion is
between particles. Within the gaussian approximation, we study the nature of
the elementary excitations, including their density of states and mobility edge
transition. We give the gaussian exponent at criticality in 1D and show
that its ratio to of the pure system is universal.Comment: Revtex 3.0, 11 pages (4 figures will be sent through airmail upon
request
Disordered Boson Systems: A Perturbative Study
A hard-core disordered boson system is mapped onto a quantum spin 1/2
XY-model with transverse random fields. It is then generalized to a system of
spins with an arbitrary magnitude S and studied through a 1/S expansion. The
first order 1/S expansion corresponds to a spin-wave theory. The effect of weak
disorder is studied perturbatively within such a first order 1/S scheme. We
compute the reduction of the speed of sound and the life time of the Bloch
phonons in the regime of weak disorder. Generalizations of the present study to
the strong disordered regime are discussed.Comment: 27 pages, revte
The spectral gap for some spin chains with discrete symmetry breaking
We prove that for any finite set of generalized valence bond solid (GVBS)
states of a quantum spin chain there exists a translation invariant
finite-range Hamiltonian for which this set is the set of ground states. This
result implies that there are GVBS models with arbitrary broken discrete
symmetries that are described as combinations of lattice translations, lattice
reflections, and local unitary or anti-unitary transformations. We also show
that all GVBS models that satisfy some natural conditions have a spectral gap.
The existence of a spectral gap is obtained by applying a simple and quite
general strategy for proving lower bounds on the spectral gap of the generator
of a classical or quantum spin dynamics. This general scheme is interesting in
its own right and therefore, although the basic idea is not new, we present it
in a system-independent setting. The results are illustrated with an number of
examples.Comment: 48 pages, Plain TeX, BN26/Oct/9
Interaction of Low - Energy Induced Gravity with Quantized Matter and Phase Transition Induced by Curvature
At high energy scale the only quantum effect of any asymptotic free and
asymptotically conformal invariant GUT is the trace anomaly of the
energy-momentum tensor. Anomaly generates the new degree of freedom, that is
propagating conformal factor. At lower energies conformal factor starts to
interact with scalar field because of the violation of conformal invariance. We
estimate the effect of such an interaction and find the running of the
nonminimal coupling from conformal value to . Then we discuss
the possibility of the first order phase transition induced by curvature in a
region close to the stable fixed point and calculate the induced values of
Newtonian and cosmological constants.Comment: 11 pages, LaTex, KEK-TH-397-KEK Preprint 94-3
Comparison of S=0 and S=1/2 Impurities in Haldane Chain Compound,
We present the effect of Zn (S=0) and Cu (S=1/2) substitution at the Ni site
of S=1 Haldane chain compound . Y NMR allows us to
measure the local magnetic susceptibility at different distances from the
defects. The Y NMR spectrum consists of one central peak and several
less intense satellite peaks. The shift of the central peak measures the
uniform susceptibility, which displays a Haldane gap 100 K and it
corresponds to an AF coupling J260 K between the near-neighbor Ni spins.
Zn or Cu substitution does not affect the Haldane gap. The satellites, which
are evenly distributed on the two sides of the central peak, probe the
antiferromagnetic staggered magnetization near the substituted site, which
decays exponentially. Its extension is found identical for both impurities and
corresponds accurately to the correlation length (T) determined by Monte
Carlo (QMC) simulations for the pure compound. In the case of non-magnetic Zn,
the temperature dependence of the induced magnetization is consistent with a
Curie law with an "effective" spin S=0.4 on each side of Zn, which is well
accounted by Quantum Monte Carlo computations of the spinless-defect-induced
magnetism. In the case of magnetic Cu, the similarity of the induced magnetism
to the Zn case implies a weak coupling of the Cu spin to the nearest- neighbor
Ni spins. The slight reductionin the induced polarization with respect to Zn is
reproduced by QMC computations by considering an antiferromagnetic coupling of
strength J'=0.1-0.2 J between the S=1/2 Cu-spin and nearest-neighbor Ni-spin.Comment: 15 pages, 18 figures, submitted to Physical Review
The Haldane gap for the S=2 antiferromagnetic Heisenberg chain revisited
Using the density matrix renormalization group (DMRG) technique, we carry out
a large scale numerical calculation for the S=2 antiferromagnetic Heisenberg
chain. Performing systematic scaling analysis for both the chain length and
the number of optimal states kept in the iterations , the Haldane gap
is estimated accurately as . Our systematic
analysis for the S=2 chains not only ends the controversies arising from
various DMRG calculations and Monte Carlo simulations, but also sheds light on
how to obtain reliable results from the DMRG calculations for other complicated
systems.Comment: 4 pages and 1 figur
- …