117 research outputs found

    On-chip manipulation of single photons from a diamond defect

    Get PDF
    Operating reconfigurable quantum circuits with single photon sources is a key goal of photonic quantum information science and technology. We use an integrated waveguide device containing directional couplers and a reconfigurable thermal phase controller to manipulate single photons emitted from a chromium related color center in diamond. Observation of both a wavelike interference pattern and particlelike sub-Poissionian autocorrelation functions demonstrates coherent manipulation of single photons emitted from the chromium related center and verifies wave particle duality. © 2013 American Physical Society

    The Influence of Temperature on Coumarin 153 Fluorescence Kinetics

    Get PDF
    The influence of temperature varied in the range 183 K–323 K on the fluorescence quantum yield, fluorescence lifetime, absorption and emission transition moments and non-radiative deactivation rate was determined for the well known and largely used dye Coumarin 153, dissolved in 1-chloropropane. The Kennard-Stepanov relation connecting the absorption and emission spectra was used to check for the presence of more than one absorbing/emitting species and to investigate whether intramolecular vibrational redistribution completes in the C153 excited S1 state before the emission takes place. The emission spectrum corresponding to S1→S0 transition, was fitted at each temperature to the model function including the information on the dye vibrational modes coupling. In this way the displacement in equilibrium distance for the most active vibrational mode was determined for C153 in S1 and in S0. Using the temperature dependence of the fluorescence decay time and quantum yield, the non-radiative deactivation rate was determined. Its temperature dependence was compared to that calculated using the theoretical model with the most active vibrational mode displacement values taken from steady-state spectra analysis. The somewhat surprising dependence of the fluorescence decay time and quantum yield on temperature was related to non-trivial coupling between low-frequency vibrational modes of C153 in the excited and ground states

    Genome-wide characterization of simple sequence repeats in cucumber (Cucumis sativus L.)

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Cucumber, <it>Cucumis sativus </it>L. is an important vegetable crop worldwide. Until very recently, cucumber genetic and genomic resources, especially molecular markers, have been very limited, impeding progress of cucumber breeding efforts. Microsatellites are short tandemly repeated DNA sequences, which are frequently favored as genetic markers due to their high level of polymorphism and codominant inheritance. Data from previously characterized genomes has shown that these repeats vary in frequency, motif sequence, and genomic location across taxa. During the last year, the genomes of two cucumber genotypes were sequenced including the Chinese fresh market type inbred line '9930' and the North American pickling type inbred line 'Gy14'. These sequences provide a powerful tool for developing markers in a large scale. In this study, we surveyed and characterized the distribution and frequency of perfect microsatellites in 203 Mbp assembled Gy14 DNA sequences, representing 55% of its nuclear genome, and in cucumber EST sequences. Similar analyses were performed in genomic and EST data from seven other plant species, and the results were compared with those of cucumber.</p> <p>Results</p> <p>A total of 112,073 perfect repeats were detected in the Gy14 cucumber genome sequence, accounting for 0.9% of the assembled Gy14 genome, with an overall density of 551.9 SSRs/Mbp. While tetranucleotides were the most frequent microsatellites in genomic DNA sequence, dinucleotide repeats, which had more repeat units than any other SSR type, had the highest cumulative sequence length. Coding regions (ESTs) of the cucumber genome had fewer microsatellites compared to its genomic sequence, with trinucleotides predominating in EST sequences. AAG was the most frequent repeat in cucumber ESTs. Overall, AT-rich motifs prevailed in both genomic and EST data. Compared to the other species examined, cucumber genomic sequence had the highest density of SSRs (although comparable to the density of poplar, grapevine and rice), and was richest in AT dinucleotides. Using an electronic PCR strategy, we investigated the polymorphism between 9930 and Gy14 at 1,006 SSR loci, and found unexpectedly high degree of polymorphism (48.3%) between the two genotypes. The level of polymorphism seems to be positively associated with the number of repeat units in the microsatellite. The <it>in silico </it>PCR results were validated empirically in 660 of the 1,006 SSR loci. In addition, primer sequences for more than 83,000 newly-discovered cucumber microsatellites, and their exact positions in the Gy14 genome assembly were made publicly available.</p> <p>Conclusions</p> <p>The cucumber genome is rich in microsatellites; AT and AAG are the most abundant repeat motifs in genomic and EST sequences of cucumber, respectively. Considering all the species investigated, some commonalities were noted, especially within the monocot and dicot groups, although the distribution of motifs and the frequency of certain repeats were characteristic of the species examined. The large number of SSR markers developed from this study should be a significant contribution to the cucurbit research community.</p

    Some comments on the significance and development of midline behavior during infancy

    Full text link
    With the waning of the tonic neck reflex beginning with the 8th to 12th week, and disappearing, in most instances, by the 16th week, the infant begins to become bilateral and makes symmetrical movements and engages his hands in the midline usually over the chest while in a supine position. The developmental significance of such behavior is considered—for example, its participation in the emerging sense of self and its role in the consolidation of emerging ego skills. Consideration is given to the possible implications of faulty midline behavior for development, and to whether failure to engage in an optimal amount of midline behavior, in interaction with other factors, can be used to alert observers to possible future developmental disturbances.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/43965/1/10578_2005_Article_BF01435498.pd

    Genetic Variants of APOL1 Are Major Determinants of Kidney Failure in People of African Ancestry With HIV

    Get PDF
    INTRODUCTION: Variants of the APOL1 gene are associated with chronic kidney disease (CKD) in people of African ancestry, although evidence for their impact in people with HIV are sparse. METHODS: We conducted a cross-sectional study investigating the association between APOL1 renal risk alleles and kidney disease in people of African ancestry with HIV in the UK. The primary outcome was end-stage kidney disease (ESKD; estimated glomerular filtration rate [eGFR] of 30 mg/mmol), and biopsy-proven HIV-associated nephropathy (HIVAN). Multivariable logistic regression was used to estimate the associations between APOL1 high-risk genotypes (G1/G1, G1/G2, G2/G2) and kidney disease outcomes. RESULTS: A total of 2864 participants (mean age 48.1 [SD 10.3], 57.3% female) were genotyped, of whom, 354 (12.4%) had APOL1 high-risk genotypes, and 99 (3.5%) had ESKD. After adjusting for demographic, HIV, and renal risk factors, individuals with APOL1 high-risk genotypes were at increased odds of ESKD (odds ratio [OR] 10.58, 95% CI 6.22–17.99), renal impairment (OR 5.50, 95% CI 3.81–7.95), albuminuria (OR 3.34, 95% CI 2.00–5.56), and HIVAN (OR 30.16, 95% CI 12.48–72.88). An estimated 49% of ESKD was attributable to APOL1 high-risk genotypes. CONCLUSION: APOL1 high-risk genotypes were strongly associated with kidney disease in people of African ancestry with HIV and accounted for approximately half of ESKD cases in this cohort

    Sickle Cell Trait and Kidney Disease in People of African Ancestry With HIV

    Get PDF
    Introduction: Sickle cell trait (SCT) has been associated with chronic kidney disease (CKD) in African Americans, although evidence for its impact in Africans and people with HIV is currently lacking. We conducted a cross-sectional study investigating the association between SCT and kidney disease in people of African ancestry with HIV in the UK. Methods: The primary outcome was estimated glomerular filtration rate (eGFR) 50 mg/mmol), and albuminuria (albumin-to-creatinine ratio >3 mg/mmol). Multivariable logistic regression was used to estimate the associations between SCT and kidney disease outcomes. Results: A total of 2895 participants (mean age 48.1 [SD 10.3], 57.2% female) were included, of whom 335 (11.6%) had SCT and 352 (12.2%) had eGFR <60 ml/min per 1.73 m2. After adjusting for demographic, HIV, and kidney risk factors including APOL1 high-risk genotype status, individuals with SCT were more likely to have eGFR <60 ml/min per 1.73 m2 (odds ratio 1.62 [95% CI 1.14–2.32]), eGFR <90 ml/min per 1.73 m2 (1.50 [1.14–1.97]), and albuminuria (1.50 [1.09–2.05]). Stratified by APOL1 status, significant associations between SCT and GFR <60 ml/min per 1.73 m2, eGFR <90 ml/min per 1.73 m2, proteinuria, and albuminuria were observed for those with APOL1 low-risk genotypes. Conclusion: Our results extend previously reported associations between SCT and kidney disease to people with HIV. In people of African ancestry with HIV, these associations were largely restricted to those with APOL1 low-risk genotypes

    Syntenic relationships between cucumber (Cucumis sativus L.) and melon (C. melo L.) chromosomes as revealed by comparative genetic mapping

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Cucumber, <it>Cucumis sativus </it>L. (2n = 2 × = 14) and melon, <it>C. melo </it>L. (2n = 2 × = 24) are two important vegetable species in the genus <it>Cucumis </it>(family Cucurbitaceae). Both species have an Asian origin that diverged approximately nine million years ago. Cucumber is believed to have evolved from melon through chromosome fusion, but the details of this process are largely unknown. In this study, comparative genetic mapping between cucumber and melon was conducted to examine syntenic relationships of their chromosomes.</p> <p>Results</p> <p>Using two melon mapping populations, 154 and 127 cucumber SSR markers were added onto previously reported F<sub>2</sub>- and RIL-based genetic maps, respectively. A consensus melon linkage map was developed through map integration, which contained 401 co-dominant markers in 12 linkage groups including 199 markers derived from the cucumber genome. Syntenic relationships between melon and cucumber chromosomes were inferred based on associations between markers on the consensus melon map and cucumber draft genome scaffolds. It was determined that cucumber Chromosome 7 was syntenic to melon Chromosome I. Cucumber Chromosomes 2 and 6 each contained genomic regions that were syntenic with melon chromosomes III+V+XI and III+VIII+XI, respectively. Likewise, cucumber Chromosomes 1, 3, 4, and 5 each was syntenic with genomic regions of two melon chromosomes previously designated as II+XII, IV+VI, VII+VIII, and IX+X, respectively. However, the marker orders in several syntenic blocks on these consensus linkage maps were not co-linear suggesting that more complicated structural changes beyond simple chromosome fusion events have occurred during the evolution of cucumber.</p> <p>Conclusions</p> <p>Comparative mapping conducted herein supported the hypothesis that cucumber chromosomes may be the result of chromosome fusion from a 24-chromosome progenitor species. Except for a possible inversion, cucumber Chromosome 7 has largely remained intact in the past nine million years since its divergence from melon. Meanwhile, many structural changes may have occurred during the evolution of the remaining six cucumber chromosomes. Further characterization of the genomic nature of <it>Cucumis </it>species closely related to cucumber and melon might provide a better understanding of the evolutionary history leading to modern cucumber.</p

    A Unique Carrier for Delivery of Therapeutic Compounds beyond the Blood-Brain Barrier

    Get PDF
    BACKGROUND: Therapeutic intervention in many neurological diseases is thwarted by the physical obstacle formed by the blood-brain barrier (BBB) that excludes most drugs from entering the brain from the blood. Thus, identifying efficacious modes of drug delivery to the brain remains a "holy grail" in molecular medicine and nanobiotechnology. Brain capillaries, that comprise the BBB, possess an endogenous receptor that ferries an iron-transport protein, termed p97 (melanotransferrin), across the BBB. Here, we explored the hypothesis that therapeutic drugs "piggybacked" as conjugates of p97 can be shuttled across the BBB for treatment of otherwise inoperable brain tumors. APPROACH: Human p97 was covalently linked with the chemotherapeutic agents paclitaxel (PTAX) or adriamycin (ADR) and following intravenous injection, measured their penetration into brain tissue and other organs using radiolabeled and fluorescent derivatives of the drugs. In order to establish efficacy of the conjugates, we used nude mouse models to assess p97-drug conjugate activity towards glioma and mammary tumors growing subcutaneously compared to those growing intracranially. PRINCIPAL FINDINGS: Bolus-injected p97-drug conjugates and unconjugated p97 traversed brain capillary endothelium within a few minutes and accumulated to 1-2% of the injected by 24 hours. Brain delivery with p97-drug conjugates was quantitatively 10 fold higher than with free drug controls. Furthermore, both free-ADR and p97-ADR conjugates equally inhibited the subcutaneous growth of gliomas growing outside the brain. Evocatively, only p97-ADR conjugates significantly prolonged the survival of animals bearing intracranial gliomas or mammary tumors when compared to similar cumulated doses of free-ADR. SIGNIFICANCE: This study provides the initial proof of concept for p97 as a carrier capable of shuttling therapeutic levels of drugs from the blood to the brain for the treatment of neurological disorders, including classes of resident and metastatic brain tumors. It may be prudent, therefore, to consider implementation of this novel delivery platform in various clinical settings for therapeutic intervention in acute and chronic neurological diseases

    Accurate Learning with Few Atlases (ALFA): an algorithm for MRI neonatal brain extraction and comparison with 11 publicly available methods

    Get PDF
    Accurate whole-brain segmentation, or brain extraction, of magnetic resonance imaging (MRI) is a critical first step in most neuroimage analysis pipelines. The majority of brain extraction algorithms have been developed and evaluated for adult data and their validity for neonatal brain extraction, which presents age-specific challenges for this task, has not been established. We developed a novel method for brain extraction of multi-modal neonatal brain MR images, named ALFA (Accurate Learning with Few Atlases). The method uses a new sparsity-based atlas selection strategy that requires a very limited number of atlases ‘uniformly’ distributed in the low-dimensional data space, combined with a machine learning based label fusion technique. The performance of the method for brain extraction from multi-modal data of 50 newborns is evaluated and compared with results obtained using eleven publicly available brain extraction methods. ALFA outperformed the eleven compared methods providing robust and accurate brain extraction results across different modalities. As ALFA can learn from partially labelled datasets, it can be used to segment large-scale datasets efficiently. ALFA could also be applied to other imaging modalities and other stages across the life course
    corecore