1,290 research outputs found
Age Sensitivity of Behavioral Tests and Brain Substrates of Normal Aging in Mice
Knowledge of age sensitivity, the capacity of a behavioral test to reliably detect age-related changes, has utility in the design of experiments to elucidate processes of normal aging. We review the application of these tests in studies of normal aging and compare and contrast the age sensitivity of the Barnes maze, eyeblink classical conditioning, fear conditioning, Morris water maze, and rotorod. These tests have all been implemented to assess normal age-related changes in learning and memory in rodents, which generalize in many cases to age-related changes in learning and memory in all mammals, including humans. Behavioral assessments are a valuable means to measure functional outcomes of neuroscientific studies of aging. Highlighted in this review are the attributes and limitations of these measures in mice in the context of age sensitivity and processes of brain aging. Attributes of these tests include reliability and validity as assessments of learning and memory, well-defined neural substrates, and sensitivity to neural and pharmacological manipulations and disruptions. These tests engage the hippocampus and/or the cerebellum, two structures centrally involved in learning and memory that undergo functional and anatomical changes in normal aging. A test that is less well represented in studies of normal aging, the context pre-exposure facilitation effect (CPFE) in fear conditioning, is described as a method to increase sensitivity of contextual fear conditioning to changes in the hippocampus. Recommendations for increasing the age sensitivity of all measures of normal aging in mice are included, as well as a discussion of the potential of the under-studied CPFE to advance understanding of subtle hippocampus-mediated phenomena
The hard X-ray burst spectrometer event listing, 1980 - 1985
This event listing is a comprehensive reference for the hard X-ray bursts detected with the Hard X-Ray Burst Spectrometer on the Solar Maximum Mission from the time of launch on February 14, 1980 to September 1985. Over 8000 X-ray events were detected in the energy range from 30 to approx. 500 keV with the vast majority being solar flares. The listing includes the start time, peak time, duration and peak rate of each event
The complete Hard X Ray Burst Spectrometer event list, 1980-1989
This event list is a comprehensive reference for all Hard X ray bursts detected with the Hard X Ray Burst Spectrometer on the Solar Maximum Mission from the time of launch on Feb. 14, 1980 to the end of the mission in Dec. 1989. Some 12,776 events were detected in the energy range 30 to 600 keV with the vast majority being solar flares. This list includes the start time, peak time, duration, and peak rate of each event
A discrete slug population model determined by egg production
Slugs are significant pests in agriculture (as well as a nuisance to gardeners), and it is therefore important to understand their population dynamics for the construction of efficient and effective control measures. Differential equation models of slug populations require the inclusion of large (variable) temporal delays, and strong seasonal forcing results in a non-autonomous system. This renders such models open to only a limited amount of rigorous analysis. In this paper, we derive a novel batch model based purely upon the quantity of eggs produced at different times of the year. This model is open to considerable reduction; from the resulting two variable discrete-time system it is possible to reconstruct the dynamics of the full population across the year and give conditions for extinction or global stability and persistence. Furthermore, the steady state temporal population distribution displays qualitatively different behavior with only small changes in the survival probability of slugs. The model demonstrates how small variations in the favorability of different years may result in widely different slug population fluctuations between consecutive years, and is in good agreement with field data
The hard X-ray burst spectrometer event listing 1980, 1981 and 1982
A comprehensive reference for the hard X-ray bursts detected with the Hard X-Ray Burst Spectrometer on the Solar Maximum Mission for the time of launch on February 14, 1980 to March 1983 is provided. Over 6300 X-ray events were detected in the energy range from 30 to approx 500 keV with the vast majority being solar flares. The listing includes the start time, peak time, duration and peak rate of each event
\u3ci\u3eDay to Day Eats\u3c/i\u3e: Using an Educational Blog to Extend Nutrition Education
An educational blog was created for the purposes of extending learning beyond the reach of organized classes and supplementing the core themes of the Expanded Food and Nutrition Education Program. Focus group members reacted to the format, content, visual appeal, and writing style of the blog and addressed their likelihood of reading the blog because of these elements. Their overall acceptance of the blog as a relevant source of nutrition information confirms the usefulness of this mode of social media for expanding the sharing of information beyond in-person interactions
The hard X-ray burst spectrometer event listing 1980-1987
This event listing is a comprehensive reference for the Hard X-ray bursts detected with the Hard X-ray Burst Spectrometer on the Solar Maximum Mission from the time of launch 14 February 1980 to December 1987. Over 8600 X-ray events were detected in the energy range from 30 to approx. 600 keV with the vast majority being solar flares. The listing includes the start time, peak time, duration and peak rate of each event
Encoded
ENCODED is an immersive aerial dance performance and installation that uses the latest interactive technologies to build a projected digital environment that responds to the movements of the performers
From Heisenberg to Goedel via Chaitin
In 1927 Heisenberg discovered that the ``more precisely the position is
determined, the less precisely the momentum is known in this instant, and vice
versa''. Four years later G\"odel showed that a finitely specified, consistent
formal system which is large enough to include arithmetic is incomplete. As
both results express some kind of impossibility it is natural to ask whether
there is any relation between them, and, indeed, this question has been
repeatedly asked for a long time. The main interest seems to have been in
possible implications of incompleteness to physics. In this note we will take
interest in the {\it converse} implication and will offer a positive answer to
the question: Does uncertainty imply incompleteness? We will show that
algorithmic randomness is equivalent to a ``formal uncertainty principle''
which implies Chaitin's information-theoretic incompleteness. We also show that
the derived uncertainty relation, for many computers, is physical. In fact, the
formal uncertainty principle applies to {\it all} systems governed by the wave
equation, not just quantum waves. This fact supports the conjecture that
uncertainty implies randomness not only in mathematics, but also in physics.Comment: Small change
- …