116 research outputs found

    Otolaryngologic manifestations of klippel-feil syndrome in children

    Get PDF
    IMPORTANCE: Children with Klippel-Feil syndrome (KFS), characterized principally by abnormal fusion of 2 or more cervical vertebrae, may have many additional congenital anomalies. The overall prevalence of otolaryngologic manifestations among patients with KFS has not been previously characterized. OBJECTIVE: To define the otolaryngologic diagnoses made and procedures performed in95 patients with KFS, which, to our knowledge, is the largest series of this challenging patient population published to date. DESIGN, SETTING, AND PARTICIPANTS: For this retrospective review, all patients with KFS who underwent otolaryngology consultation at our institution over a 26-year period (January 1989 to December 2015) were included. Patients were identified using International Classification of Diseases, Ninth Revision (ICD-9) codes and were confirmed through individual medical record review. Relevant otolaryngologic diagnoses and procedures were extracted using ICD-9 and Current Procedural Terminology codes, respectively. Selected demographics included age, sex, number of clinic visits, and number of procedures. MAINOUTCOMES ANDMEASURES: The primary outcomes were the otolaryngologic diagnoses and procedures associated with the KFS patient population; the secondary outcome was Cormack-Lehane classification documented during airway procedures. RESULTS: Overall, 95 patients with KFS were included in this study (55 males [58%] and 40 females [42%]); mean (range) age at time of presentation to the otorhinolaryngology clinic was 5.8 (birth-23.0) years. Each patient with KFS averaged 8 visits to the otorhinolaryngology office and 5 otolaryngologic diagnoses. The most common diagnosis was conductive hearing loss (n = 49 [52%]), followed by sensorineural hearing loss (n = 38 [40%]), and dysphagia (n = 37 [39%]). Sixty-two (65%) patients underwent otolaryngologic procedures, with 44 (46%) undergoing multiple procedures. The most common procedure was tympanostomy tube placement (n = 36 [38%]), followed by office flexible endoscopy (n = 23 [24%]). Twelve of the20 patients who underwent direct laryngoscopy had documented Cormack-Lehane classification; 5 of 12 patients (42%) had a compromised view (grade 2, 3, or 4) of the larynx. Three patients required tracheotomies at this institution for airway stabilization purposes; each had severe upper airway obstruction leading to respiratory failure. CONCLUSIONS AND RELEVANCE: Patients with KFS require consultation for a variety of otolaryngologic conditions. Among these, hearing loss is the most common, but airway issues related to cervical spine fusion are the most challenging. Formulating an appropriate care plan in advance is paramount, even for routine otolaryngology procedures

    High-throughput detection of mutations responsible for childhood hearing loss using resequencing microarrays

    Get PDF
    Background: Despite current knowledge of mutations in 45 genes that can cause nonsyndromic sensorineural hearing loss (SNHL), no unified clinical test has been developed that can comprehensively detect mutations in multiple genes. We therefore designed Affymetrix resequencing microarrays capable of resequencing 13 genes mutated in SNHL (GJB2, GJB6, CDH23, KCNE1, KCNQ1, MYO7A, OTOF, PDS, MYO6, SLC26A5, TMIE, TMPRSS3, USH1C). We present results from hearing loss arrays developed in two different research facilities and highlight some of the approaches we adopted to enhance the applicability of resequencing arrays in a clinical setting. Results: We leveraged sequence and intensity pattern features responsible for diminished coverage and accuracy and developed a novel algorithm, sPROFILER, which resolved >80% of no-calls from GSEQ and allowed 99.6% (range: 99.2-99.8%) of sequence to be called, while maintaining overall accuracy at >99.8% based upon dideoxy sequencing comparison. Conclusions: Together, these findings provide insight into critical issues for disease-centered resequencing protocols suitable for clinical application and support the use of array-based resequencing technology as a valuable molecular diagnostic tool for pediatric SNHL and other genetic diseases with substantial genetic heterogeneity

    International Pediatric Otolaryngology Group (IPOG) consensus recommendations: Hearing loss in the pediatric patient

    Get PDF
    Objective To provide recommendations for the workup of hearing loss in the pediatric patient. Methods Expert opinion by the members of the International Pediatric Otolaryngology Group. Results Consensus recommendations include initial screening and diagnosis as well as the workup of sensorineural, conductive and mixed hearing loss in children. The consensus statement discusses the role of genetic testing and imaging and provides algorithms to guide the workup of children with hearing loss. Conclusion The workup of children with hearing loss can be guided by the recommendations provided herein

    Genomic diversity of bacteriophages infecting Microbacterium spp

    Get PDF
    The bacteriophage population is vast, dynamic, old, and genetically diverse. The genomics of phages that infect bacterial hosts in the phylum Actinobacteria show them to not only be diverse but also pervasively mosaic, and replete with genes of unknown function. To further explore this broad group of bacteriophages, we describe here the isolation and genomic characterization of 116 phages that infect Microbacterium spp. Most of the phages are lytic, and can be grouped into twelve clusters according to their overall relatedness; seven of the phages are singletons with no close relatives. Genome sizes vary from 17.3 kbp to 97.7 kbp, and their G+C% content ranges from 51.4% to 71.4%, compared to ~67% for their Microbacterium hosts. The phages were isolated on five different Microbacterium species, but typically do not efficiently infect strains beyond the one on which they were isolated. These Microbacterium phages contain many novel features, including very large viral genes (13.5 kbp) and unusual fusions of structural proteins, including a fusion of VIP2 toxin and a MuF-like protein into a single gene. These phages and their genetic components such as integration systems, recombineering tools, and phage-mediated delivery systems, will be useful resources for advancing Microbacterium genetics

    Consensus interpretation of the p.Met34Thr and p.Val37Ile variants in GJB2 by the ClinGen Hearing Loss Expert Panel

    Get PDF
    Purpose: Pathogenic variants in GJB2 are the most common cause of autosomal recessive sensorineural hearing loss. The classification of c.101T>C/p.Met34Thr and c.109G>A/p.Val37Ile in GJB2 are controversial. Therefore, an expert consensus is required for the interpretation of these two variants. Methods: The ClinGen Hearing Loss Expert Panel collected published data and shared unpublished information from contributing laboratories and clinics regarding the two variants. Functional, computational, allelic, and segregation data were also obtained. Case-control statistical analyses were performed. Results: The panel reviewed the synthesized information, and classified the p.Met34Thr and p.Val37Ile variants utilizing professional variant interpretation guidelines and professional judgment. We found that p.Met34Thr and p.Val37Ile are significantly overrepresented in hearing loss patients, compared with population controls. Individuals homozygous or compound heterozygous for p.Met34Thr or p.Val37Ile typically manifest mild to moderate hearing loss. Several other types of evidence also support pathogenic roles for these two variants. Conclusion: Resolving controversies in variant classification requires coordinated effort among a panel of international multi-institutional experts to share data, standardize classification guidelines, review evidence, and reach a consensus. We concluded that p.Met34Thr and p.Val37Ile variants in GJB2 are pathogenic for autosomal recessive nonsyndromic hearing loss with variable expressivity and incomplete penetrance

    Trapping \u3ci\u3ePhyllophaga \u3c/i\u3espp. (Coleoptera: Scarabaeidae: Melolonthinae) in the United States and Canada using sex attractants.

    Get PDF
    The sex pheromone of the scarab beetle, Phyllophaga anxia, is a blend of the methyl esters of two amino acids, L-valine and L-isoleucine. A field trapping study was conducted, deploying different blends of the two compounds at 59 locations in the United States and Canada. More than 57,000 males of 61 Phyllophaga species (Coleoptera: Scarabaeidae: Melolonthinae) were captured and identified. Three major findings included: (1) widespread use of the two compounds [of the 147 Phyllophaga (sensu stricto) species found in the United States and Canada, males of nearly 40% were captured]; (2) in most species intraspecific male response to the pheromone blends was stable between years and over geography; and (3) an unusual pheromone polymorphism was described from P. anxia. Populations at some locations were captured with L-valine methyl ester alone, whereas populations at other locations were captured with L-isoleucine methyl ester alone. At additional locations, the L-valine methyl ester-responding populations and the L-isoleucine methyl ester-responding populations were both present, producing a bimodal capture curve. In southeastern Massachusetts and in Rhode Island, in the United States, P. anxia males were captured with blends of L-valine methyl ester and L-isoleucine methyl ester

    Comprehensive Pan-Genomic Characterization of Adrenocortical Carcinoma

    Get PDF
    SummaryWe describe a comprehensive genomic characterization of adrenocortical carcinoma (ACC). Using this dataset, we expand the catalogue of known ACC driver genes to include PRKAR1A, RPL22, TERF2, CCNE1, and NF1. Genome wide DNA copy-number analysis revealed frequent occurrence of massive DNA loss followed by whole-genome doubling (WGD), which was associated with aggressive clinical course, suggesting WGD is a hallmark of disease progression. Corroborating this hypothesis were increased TERT expression, decreased telomere length, and activation of cell-cycle programs. Integrated subtype analysis identified three ACC subtypes with distinct clinical outcome and molecular alterations which could be captured by a 68-CpG probe DNA-methylation signature, proposing a strategy for clinical stratification of patients based on molecular markers

    Integrated genomic characterization of oesophageal carcinoma

    Get PDF
    Oesophageal cancers are prominent worldwide; however, there are few targeted therapies and survival rates for these cancers remain dismal. Here we performed a comprehensive molecular analysis of 164 carcinomas of the oesophagus derived from Western and Eastern populations. Beyond known histopathological and epidemiologic distinctions, molecular features differentiated oesophageal squamous cell carcinomas from oesophageal adenocarcinomas. Oesophageal squamous cell carcinomas resembled squamous carcinomas of other organs more than they did oesophageal adenocarcinomas. Our analyses identified three molecular subclasses of oesophageal squamous cell carcinomas, but none showed evidence for an aetiological role of human papillomavirus. Squamous cell carcinomas showed frequent genomic amplifications of CCND1 and SOX2 and/or TP63, whereas ERBB2, VEGFA and GATA4 and GATA6 were more commonly amplified in adenocarcinomas. Oesophageal adenocarcinomas strongly resembled the chromosomally unstable variant of gastric adenocarcinoma, suggesting that these cancers could be considered a single disease entity. However, some molecular features, including DNA hypermethylation, occurred disproportionally in oesophageal adenocarcinomas. These data provide a framework to facilitate more rational categorization of these tumours and a foundation for new therapies

    Integrated genomic characterization of pancreatic ductal adenocarcinoma

    Get PDF
    We performed integrated genomic, transcriptomic, and proteomic profiling of 150 pancreatic ductal adenocarcinoma (PDAC) specimens, including samples with characteristic low neoplastic cellularity. Deep whole-exome sequencing revealed recurrent somatic mutations in KRAS, TP53, CDKN2A, SMAD4, RNF43, ARID1A, TGFβR2, GNAS, RREB1, and PBRM1. KRAS wild-type tumors harbored alterations in other oncogenic drivers, including GNAS, BRAF, CTNNB1, and additional RAS pathway genes. A subset of tumors harbored multiple KRAS mutations, with some showing evidence of biallelic mutations. Protein profiling identified a favorable prognosis subset with low epithelial-mesenchymal transition and high MTOR pathway scores. Associations of non-coding RNAs with tumor-specific mRNA subtypes were also identified. Our integrated multi-platform analysis reveals a complex molecular landscape of PDAC and provides a roadmap for precision medicine
    corecore