12 research outputs found

    The role of the aryl hydrocarbon receptor in autoimmunity and tumor immunity

    Full text link
    At the intersection between autoimmune disease and cancer lies a disruption in the balance of our body’s critically important immune system, and, specifically, in its regulation. While autoimmune diseases are the result of overactivation and a failure to regulate improper responses to the body’s own tissues, cancer is the result of improper suppression and a failure to recognize and eradicate transformed malignant cells. Although they are fundamentally different conditions, overlap can be found in the pathways which are critical to disease progression and which may represent important therapeutic targets. One such pathway implicated in both autoimmunity and cancer is the aryl hydrocarbon receptor (AhR). AhR activation suppresses immune cell activation through the modulation of T cell differentiation and antigen presenting cell (APC) function. AhR activation shows a beneficial therapeutic effect in models of autoimmune disease, but has also been implicated in driving cancer progression and tumor-mediated immunosuppression. While it is clear that the AhR plays an important role in the immune response, the mechanisms behind AhR regulation of the immune system and the effects of its modulation in autoimmunity and cancer are still not fully understood. Thus, in this work, we investigated the effect of targeting the AhR in models of autoimmunity and cancer, using the experimental autoimmune encephalomyelitis (EAE) model of multiple sclerosis (MS) and the murine oral cancer (MOC) model of oral squamous cell carcinoma (OSCC). We demonstrated that AhR activation using the endogenous ligand 2-(1’H-indole-3’-carbonyl)-thiazole-4-carboxylic acid methyl ester (ITE) induced a tolerogenic transcriptional response in mouse and human dendritic cells (DCs) associated with the induction of immunoregulatory/immunosuppressive mechanisms. We further showed that targeting the AhR using a nanoliposome (NLP) delivery platform, which co-encapsulated a MS autoantigen, suppressed the development of EAE in multiple models, both in preventative and therapeutic contexts. This disease suppression was associated with the expansion of antigen-specific FoxP3+ regulatory T cells (Treg cells) and IL10+ type 1 regulatory T cells (Tr1 cells), and a reduction in CNS-infiltrating effector T cells (Teff cells). Using the MOC1 model of OSCC we demonstrated that deletion of the AhR in MOC1 malignant cells completely blocks in vivo tumor growth in an immune system-dependent manner and renders mice completely immune to either local or systemic re-challenge with wildtype MOC1 cells. Suppression of tumor growth was associated with a decrease in the expression of suppressive immune checkpoint markers including PD-L1 and CD39 on macrophages, dendritic cells, and Ly6G+ myeloid cells, and PD-1, CTLA4, Lag3, and CD39 on CD4+ T cells. Further, the AhR was found to control expression of chemokines and immunosuppressive IDO and PD-L1 in malignant cells themselves, suggesting that AhR activity in tumor cells may simultaneously regulate multiple immune checkpoints. Taken together, these results provide new insight into the critical role for the AhR in both autoimmunity and cancer, and confirm it as a valid therapeutic target for both diseases.2022-03-05T00:00:00

    System-wide Analysis of the T Cell Response

    Get PDF
    SummaryThe T cell receptor (TCR) controls the cellular adaptive immune response to antigens, but our understanding of TCR repertoire diversity and response to challenge is still incomplete. For example, TCR clones shared by different individuals with minimal alteration to germline gene sequences (public clones) are detectable in all vertebrates, but their significance is unknown. Although small in size, the zebrafish TCR repertoire is controlled by processes similar to those operating in mammals. Thus, we studied the zebrafish TCR repertoire and its response to stimulation with self and foreign antigens. We found that cross-reactive public TCRs dominate the T cell response, endowing a limited TCR repertoire with the ability to cope with diverse antigenic challenges. These features of vertebrate public TCRs might provide a mechanism for the rapid generation of protective T cell immunity, allowing a short temporal window for the development of more specific private T cell responses

    AHR Activation Is Protective against Colitis Driven by T Cells in Humanized Mice

    Get PDF
    Summary: Existing therapies for inflammatory bowel disease that are based on broad suppression of inflammation result in variable clinical benefit and unwanted side effects. A potential therapeutic approach for promoting immune tolerance is the in vivo induction of regulatory T cells (Tregs). Here we report that activation of the aryl hydrocarbon receptor using the non-toxic agonist 2-(1′H-indole-3′-carbonyl)-thiazole-4-carboxylic acid methyl ester (ITE) induces human Tregs in vitro that suppress effector T cells through a mechanism mediated by CD39 and Granzyme B. We then developed a humanized murine system whereby human CD4+ T cells drive colitis upon exposure to 2,4,6-trinitrobenzenesulfonic acid and assessed ITE as a potential therapeutic. ITE administration ameliorated colitis in humanized mice with increased CD39, Granzyme B, and IL10-secreting human Tregs. These results develop an experimental model to investigate human CD4+ T responses in vivo and identify the non-toxic AHR agonist ITE as a potential therapy for promoting immune tolerance in the intestine. : Therapeutic approaches aimed at expanding regulatory T cells in the gut to promote immune tolerance in patients with inflammatory bowel disease (IBD) are of clinical significance. Goettel et al. establish a humanized murine model of IBD driven by human T cells and find that activation of AHR by the non-toxic agonist ITE can prevent experimental colitis. Keywords: AHR, treg, humanized mice, IBD, IT

    Tolerogenic nanoparticles inhibit T cell-mediated autoimmunity through SOCS2.

    No full text
    Type 1 diabetes (T1D) is a T cell-dependent autoimmune disease that is characterized by the destruction of insulin-producing β cells in the pancreas. The administration to patients of ex vivo-differentiated FoxP3(+) regulatory T (Treg) cells or tolerogenic dendritic cells (DCs) that promote Treg cell differentiation is considered a potential therapy for T1D; however, cell-based therapies cannot be easily translated into clinical practice. We engineered nanoparticles (NPs) to deliver both a tolerogenic molecule, the aryl hydrocarbon receptor (AhR) ligand 2-(1'H-indole-3'-carbonyl)-thiazole-4-carboxylic acid methyl ester (ITE), and the β cell antigen proinsulin (NPITE+Ins) to induce a tolerogenic phenotype in DCs and promote Treg cell generation in vivo. NPITE+Ins administration to 8-week-old nonobese diabetic mice suppressed autoimmune diabetes. NPITE+Ins induced a tolerogenic phenotype in DCs, which was characterized by a decreased ability to activate inflammatory effector T cells and was concomitant with the increased differentiation of FoxP3(+) Treg cells. The induction of a tolerogenic phenotype in DCs by NPs was mediated by the AhR-dependent induction of Socs2, which resulted in inhibition of nuclear factor κB activation and proinflammatory cytokine production (properties of tolerogenic DCs). Together, these data suggest that NPs constitute a potential tool to reestablish tolerance in T1D and potentially other autoimmune disorders

    A cell-based drug delivery platform for treating central nervous system inflammation

    No full text
    Mesenchymal stem cells (MSCs) are promising candidates for the development of cell-based drug delivery systems for autoimmune inflammatory diseases, such as multiple sclerosis (MS). Here, we investigated the effect of Ro-31-8425, an ATP-competitive kinase inhibitor, on the therapeutic properties of MSCs. Upon a simple pretreatment procedure, MSCs spontaneously took up and then gradually released significant amounts of Ro-31-8425. Ro-31-8425 (free or released by MSCs) suppressed the proliferation of CD4+ T cells in vitro following polyclonal and antigen-specific stimulation. Systemic administration of Ro-31-8425-loaded MSCs ameliorated the clinical course of experimental autoimmune encephalomyelitis (EAE), a murine model of MS, displaying a stronger suppressive effect on EAE than control MSCs or free Ro-31-8425. Ro-31-8425-MSC administration resulted in sustained levels of Ro-31-8425 in the serum of EAE mice, modulating immune cell trafficking and the autoimmune response during EAE. Collectively, these results identify MSC-based drug delivery as a potential therapeutic strategy for the treatment of autoimmune diseases.National Institutes of Health (Grant HL095722

    2015206 Raw data.xlsx

    No full text
    <div>Dataset associated with Nature Medicine (2016), doi:10.1038/nm.4106</div><div><br></div><div>Type I interferons and microbial metabolites of tryptophan modulate astrocyte activity and central nervous system inflammation via the aryl hydrocarbon receptor</div><div><br></div><div>1. RNA-Sequencing data of astrocytes during late stage Experimental autoimmune encephalomyelitis (EAE experiments) as compared to naive mice</div><div><br></div><div>2. Nanostring data of astrocytes and microglia during EAE</div><div><br></div><div><br></div

    Sanmarco et al., 2023.pdf

    No full text
    Dendritic cells (DCs) control the generation of self-reactive pathogenic T cells. Thus, DCs are considered attractive therapeutic targets for autoimmune diseases. Using single-cell and bulk transcriptional and metabolic analyses in combination with cell-specific gene perturbation studies we identified a negative feedback regulatory pathway that operates in DCs to limit immunopathology. Specifically, we found that lactate, produced by activated DCs and other immune cells, boosts NDUFA4L2 expression through a mechanism mediated by HIF-1a. NDUFA4L2 limits the production of mitochondrial reactive oxygen species that activate XBP1-driven transcriptional modules in DCs involved in the control of pathogenic autoimmune T cells. Moreover, we engineered a probiotic that produces lactate and suppresses T-cell autoimmunity in the central nervous system via the activation of HIF-1a/NDUFA4L2 signaling in DCs. In summary, we identified an immunometabolic pathway that regulates DC function, and developed a synthetic probiotic for its therapeutic activation. </p
    corecore