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SUMMARY

Existing therapies for inflammatory bowel disease
that are based on broad suppression of inflammation
result in variable clinical benefit and unwanted side
effects. A potential therapeutic approach for promot-
ing immune tolerance is the in vivo induction of reg-
ulatory T cells (Tregs). Here we report that activation
of the aryl hydrocarbon receptor using the non-
toxic agonist 2-(10H-indole-30-carbonyl)-thiazole-4-
carboxylic acid methyl ester (ITE) induces human
Tregs in vitro that suppress effector T cells through
a mechanism mediated by CD39 and Granzyme B.
We then developed a humanized murine system
whereby human CD4+ T cells drive colitis upon expo-
sure to 2,4,6-trinitrobenzenesulfonic acid and as-
sessed ITE as a potential therapeutic. ITE adminis-
tration ameliorated colitis in humanized mice with
increased CD39, Granzyme B, and IL10-secreting
human Tregs. These results develop an experimental
model to investigate humanCD4+ T responses in vivo
and identify the non-toxic AHR agonist ITE as a
potential therapy for promoting immune tolerance
in the intestine.

INTRODUCTION

Inflammatory bowel diseases (IBDs) are complex inflammatory

disorders of the intestine that are generally associated with

defects in mucosal immune regulation (Khor et al., 2011). Damp-

ening the inflammatory response to re-establish immune toler-

ance is a major therapeutic strategy for IBD treatment. Current

clinical approaches often involve broad suppression of the im-

mune system, resulting in limited clinical benefit and concomi-

tant risk for opportunistic infections and other side effects

(Beaugerie, 2012; Calabrese, 2006). More recently, the use of
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biologics such as anti-tumor necrosis factor (TNF) antibodies

has proved effective with nearly half of treated patients demon-

strating a clinical response (Ben-Horin et al., 2014). However,

these beneficial effects are often self-limited and highlight

the need for new therapies that promote long-lasting immune

tolerance.

Since the initial description that the thymus has critical

immunological function (Burnet and Holmes, 1962; Miller,

1961) and subsequent work by many that the thymus has func-

tions independent of elimination of autoreactive T cells (Le

Douarin et al., 1996), there has been a concerted effort to

understand the mechanisms of immunological tolerance.

Extensive experimentation has defined a group of regulatory

T cells (Tregs) that are critical for both central and peripheral

tolerance. Loss-of-function mutations in the transcription fac-

tor forkhead box P3 (FOXP3) cause a fatal autoimmune disor-

der in humans known as immunodysregulation polyendocrin-

opathy enteropathy X-linked (IPEX) syndrome. Similarly,

Foxp3�/� mice exhibit multi-organ autoinflammatory disease

and early mortality (Bennett et al., 2001). In addition, the ability

to generate or ‘‘induce’’ Tregs from the pool of helper T cells in

the periphery in order to become tolerant to innocuous foreign

antigens such as food and commensal microbes at mucosal

surfaces is equally important for mucosal immune homeostasis

(Atarashi et al., 2013; Hauet-Broere et al., 2003). The mecha-

nisms by which Tregs exert their immunoregulatory function

in the intestine are thought to occur via production of soluble

mediators and/or direct interactions with other immune cells

(Mayne and Williams, 2013). In recent years, a subpopulation

of FOXP3� interleukin (IL)10-secreting iTregs (termed Tr1 cells)

has been implicated in the regulation of intestinal inflammation

(Groux et al., 1997). This critical role for IL10 signaling in main-

taining intestinal immune homeostasis is best exemplified by

the observation that loss-of-function mutations in IL10 or the

IL10 receptor cause IBD in both mice and humans (Glocker

et al., 2009; K€uhn et al., 1993). Because Tregs are thought to

play a central role in preventing IBD (Josefowicz et al., 2012;

Mayne and Williams, 2013; Sakaguchi et al., 2010), generation
ors.
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or expansion of functional Tregs constitutes an attractive ther-

apeutic approach to treat IBD (Canavan et al., 2016), and ther-

apeutic strategies aimed at expanding Tregs in vivo have

proved effective in controlling other immune-mediated disor-

ders (Koreth et al., 2011; Saadoun et al., 2011; Desreumaux

et al., 2012).

Though several polymorphisms have been associated with

altered risk for IBD, surprisingly, only one-third of the disease

is explained by genetics, suggesting that environmental trig-

gers play an important role. The aryl hydrocarbon receptor

(AHR) is a ligand-activated transcription factor that senses

certain environmental chemicals and has been shown to exert

significant effects on the immune response. Previous work

from our group and others demonstrates a role for AHR in

the differentiation and function of Tregs and effector T cells

by controlling the production of IL10 and IL22 (Apetoh et al.,

2010; Gandhi et al., 2010; Quintana et al., 2008; Yeste et al.,

2014; Mascanfroni et al., 2015). In mice, activation of AHR sup-

presses experimental colitis, and although no current therapies

target AHR in humans, the expression of AHR is increased in

IBD lesions (Arsenescu et al., 2011; Benson and Shepherd,

2011; Chinen et al., 2015; Fukumoto et al., 2014; Furumatsu

et al., 2011; Monteleone et al., 2011). Given the importance

of Tregs in intestinal homeostasis, coupled with the immuno-

modulatory effects of IL10 and IL22 downstream of AHR

activation (Mayne and Williams, 2013; Sonnenberg et al.,

2011), AHR is an attractive therapeutic target. The exogenous

small molecule 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD)

has been shown to activate AHR; however, toxicity prevents

the use of TCDD for therapeutic intervention in patients.

Thus, there is a need not only for non-toxic AHR agonists but

also for the establishment of new experimental systems to eval-

uate the effects of AHR activation on human cells in the context

of intestinal inflammation in vivo. In this report, we investigated

the effects of the mucosal non-toxic AHR agonist 2-(10H-indole-
30-carbonyl)-thiazole-4-carboxylic acid methyl ester (ITE) (Song

et al., 2002) on human T cells in vitro and developed a new

experimental model of IBD driven by human CD4+ T cells in hu-

manized mice to assess the efficacy of AHR activation by ITE

in vivo. We found that AHR activation by ITE induces suppres-

sive human Tregs expressing Granzyme B (GZMB), CD39, IL10,

and FOXP3 and prevents T-cell-driven colitis in humanized

mice. Future studies will address whether ITE is effective in

treating established disease, which will be an important step

to determine whether ITE would be an attractive candidate

for the therapeutic induction of Tregs to treat patients with

established IBD.

RESULTS

ITE Induces Tregs through a Mechanism Mediated
by AHR
The induction of Tregs and the re-establishment of immune

tolerance is a potential approach for the long-term treatment

of IBD and other inflammatory diseases and may minimize

the deleterious side effects associated with immunosuppres-

sive approaches now in use (Chatenoud, 2015). We and

others have shown that AHR activation induces Tregs that
suppress the development of experimental autoimmunity

and inflammation (Apetoh et al., 2010; Kerkvliet et al., 2009;

Quintana et al., 2008). Although AHR activation with TCDD in-

duces functional human Tregs, toxicity concerns exclude its

use as therapeutic agent (Gandhi et al., 2010). We therefore

investigated the effects of the non-toxic AHR agonist ITE iso-

lated from mucosal tissue (Song et al., 2002). Naive CD4+

T cells from peripheral blood mononuclear cells (PBMCs) of

healthy donors were sorted based on CD4+CD62L+CD45RO�

(Figure S1) and co-cultured with autologous unfractionated

CD4+ T cells, previously treated with ITE, TCDD, or vehicle

control, in the presence of anti-CD3/anti-CD28 antibodies

with IL2. ITE treatment induced suppressive activity in human

T cells in vitro that was comparable to the suppressive activity

observed using TCDD as a positive control (Figure 1A). We

confirmed the activation of AHR by ITE using quantitative

real-time PCR (qPCR) to detect an increase in the expression

of the AHR transcriptional target CYP1A1 (Figure 1B). To test

whether the induction of suppressive T cells by ITE was

mediated by AHR, we targeted AHR using small interfering

RNA (siRNA) that abrogated the suppressive effect of ITE

and then corroborated these findings using a selective AHR

antagonist CH223191 that also blocked ITE-mediated sup-

pression in vitro (Figure 1C).

To further investigate activation of AHR by ITE in human

T cells, we analyzed the expression of cytokines and line-

age-specific molecules and transcription factors associated

with different CD4+ T cell subpopulations by qPCR. ITE treat-

ment decreased expression of TBX21, RORC, and IL23R

but not GATA3 (Figures 1D and S2), which correlates with

reduced effector T cell subsets. In contrast, T cell activation

in the presence of ITE led to significant upregulation of

Treg-associated gene transcripts, including FOXP3, IL10,

GZMB, ENTPD1, and IKZF3 (Figures 1E and S2) (Groux

et al., 1997; Quintana et al., 2012; Sakaguchi et al., 2010).

ITE treatment had a modest or no effect on the expression

of MAF, BCL6, BLIMP, IL12RB1, or IL12RB2 (Figure S2).

Based on the transcriptional analysis, we then profiled

ITE-treated CD4+ T cells to assess protein expression for

TBX21, RORC, GATA3, FOXP3, IL10, GZMB, and CD39

(encoded by ENTPD1) by flow cytometry and found it to be

consistent with the transcriptional analysis (Figures 1F and

1G). Although many of these markers are consistent with

traditional Foxp3� IL10+ Tr1 regulatory cells, a large percent-

age of ITE-treated T cells expressing CD39 were also positive

for FOXP3+, suggesting that ITE induces a mixed population

of regulatory cells, with only some possessing a conventional

Tr1 phenotype (Figure S3).

The ability of Tregs to control the activity of effector T cells can

occur via several mechanisms (Josefowicz et al., 2012; Sakagu-

chi et al., 2010). Specifically, GZMB, CD39, and IL10 are known

to contribute to the suppressive activity of Tr1 cells (Gandhi

et al., 2010; Grossman et al., 2004; Mascanfroni et al., 2015).

To determine whether the suppressive effect of ITE was medi-

ated by GZMB, we first performed suppression assays in

the presence of the GZMB inhibitor benzyloxycarbonyl-Ala-

Ala-Asp-chloromethylketone (AAD-CMK) and found that ITE-

and TCDD-mediated suppression was abrogated (Figure 1H).
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Figure 1. ITE Induces Suppressive Human Tregs through a Mechanism Mediated by AHR

(A) Suppressive activity of human naive CD4+ T cells activated with plate-bound aCD3/aCD28 and IL-2 in the presence of vehicle (CTL), ITE, or TCDD. Percent

suppression is depicted as the mean ± SEM pooled from at least three independent experiments (n = 21).

(B) Relative expression of the AHR target CYP1A1 following stimulation with aCD3/aCD28 and IL-2 in the presence of ITE or TCDD and compared to PBS vehicle

control. Data are depicted as the mean ± SEM (n = 16).

(C) Requirement for AHR for the suppressive effect of ITE. Relative suppression following siRNA-mediated knockdown of AHR compared to scrambled siRNA as

control (left). Percent T cell suppression by ITE in the presence of 10 mMCH223191, a selective antagonist of AHR, compared to DMSO as vehicle control. Results

are depicted as the mean ± SEM pooled from two independent experiments.

(D and E) qPCR analysis of RNA isolated from T cells stimulated with aCD3/aCD28 and IL-2 in the presence of vehicle, ITE, or TCDD. Target fold change was

calculated using vehicle control, with the dashed line representing the normalized control value of 1 and the mean depicted as ±SEM pooled from three inde-

pendent experiments (n R 7).

(F and G) Representative flow cytometric analysis of TBX21, GATA3, RORC, FOXP3, IL10, GZMB, and CD39 protein expression following T cell activation using

aCD3/aCD28 and IL-2 in the presence or absence of ITE for 6 days. Each flow panel is representative of at least two independent experiments.

(H) Requirement for GZMB and CD39 for the suppressive activity of ITE using a blocking antibody against CD39 or the GZMB inhibitor AAD-CMK (left) and

showing the requirement for GZMB and CD39 for TCDD-mediated suppression as a positive control (right). n = 21.

(I) Role of IL10 in ITE-mediated T cell suppression using 2.5 mg mL�1 of aIL10 blocking antibody shown as percent suppression (left) and the ability of aIL10

antibody to inhibit STAT3 phosphorylation in human T cells following a 20 min stimulation with 20 ng mL�1 of IL10 (right).

*p < 0.05, **p < 0.01, ***p < 0.001; NS, not significant.
Because CD39 can also participate in the suppression of

effector T cell responses, we inhibited CD39 using neutralizing

antibodies in ITE-treated T cells. Similar to AAD-CMK, treatment

with anti-CD39 blocked ITE- and TCDD-mediated suppressive

activity in vitro (Figure 1H). Although IL10 was upregulated by

ITE by qPCR, we tested whether antibody-mediated blockade

of IL10 would inhibit suppression. While the anti-IL10 antibody
1320 Cell Reports 17, 1318–1329, October 25, 2016
effectively blocked the phosphorylation of STAT3 in response

to IL10 (confirming a block in IL10R [interleukin-10 receptor]

signaling), this had no impact on the suppressive effect of ITE

(Figure 1I). Collectively, these results demonstrate that AHR acti-

vation by ITE induces functional human Tregs that suppress

effector T cell proliferation in a GZMB- and CD39-dependent

manner.



ITE Induces Functional Human FOXP3+ Tregs in the
Presence of TGF-b1
Transforming growth factor b1 (TGF-b1) is expressed by both

immune and non-immune cells in the intestinal lamina propria

and regulates the immune response through several mecha-

nisms, one of which consists of the differentiation, mainte-

nance, and function of FOXP3+ Tregs (Rubtsov and Rudensky,

2007). Although TGF-b1 promotes the differentiation of func-

tional FOXP3+ Tregs in mice (Chen et al., 2003), TGF-b1-

induced FOXP3+ human T cells do not exhibit suppressive

activity (Tran et al., 2007). To mimic the TGF-b1-enriched

microenvironment of the intestine, we previously showed that

AHR activation by TCDD could cooperate with TGF-b1-induced

signaling to induce suppressive FOXP3+ human Tregs in vitro

(Gandhi et al., 2010). Therefore, we investigated whether hu-

man Tregs induced using TGF-b1 in the presence of ITE would

mimic the suppressive effects of TCDD. Similar to our findings

with TCDD, human naive CD4+ T cells activated in the presence

of TGF-b1 and ITE were suppressive in vitro (Figure 2A).

Because we previously observed decreased expression of

CD4+ T cell linage-specific transcription factors following ITE

treatment (Figure 1D), we tested whether these molecules

were downregulated under Treg-inducing conditions. CD4+

T cells were treated with vehicle, TGF-b1, or TGF-b1 in the

presence of ITE or TCDD. Although TGF-b1 significantly

reduced expression of TBX21 and GATA3, no further decrease

was observed if ITE or TCDD was present (Figure 2B). TGF-b1

treatment increased RORC expression that was not further

enhanced in the presence of ITE and TCDD; however, these

data did not achieve statistical significance (Figure 2B). The

expression of IL23R was elevated over control when stimulated

with TGF-b1 and ITE, which was not observed in T cells treated

with TGF-b1 alone or in combination with TCDD (Figure 2B). We

then evaluated protein expression of these qPCR targets by

flow cytometry in T cells activated in the presence of vehicle

control, TGF-b1, or TGF-b1 and ITE and observed a reduction

in GATA3, increased expression of RORC, and a slight increase

in TBX21 over control only in the TGF-b1- and ITE-treated cells

(Figure 2C).

Activation of AHR also upregulates the expression of the

Ikaros family transcription factor AIOLOS (encoded by IKZF3)

that silences the IL2 promoter and, along with IL10 and

FOXP3, is associated with suppressive human Tregs (Gandhi

et al., 2010; Quintana et al., 2012; Sakaguchi et al., 2010). We

analyzed Tregs induced with TGF-b1 alone or in the presence

of ITE or TCDD and quantified the expression of IKZF3, IL10,

and FOXP3. Although FOXP3 was elevated in all treatment

conditions compared to control, IL10 and IKZF3 were upregu-

lated by TGF-b1 and ITE (Figures 2D and S4). Flow cytometric

analysis largely supported the transcriptional analysis, whereby

increases in FOXP3, IL10, and CD39 were also observed

(Figure 2E).

Because CD39 and GZMB were required for ITE-induced

AHR-dependent T cell suppression in vitro in the absence of

TGF-b1 (Figure 1H), we determined whetherGZMB and ENTPD1

were also upregulated following AHR activation with ITE or

TCDD under Treg-inducing conditions with TGF-b1. While there

was no increase inGZMB transcript or protein in vitro (Figures 2D
and 2E), ENTPD1 transcript levels trended higher (Figure 2D),

although cell surface expression of CD39 was increased (Fig-

ure 2E). We then tested whether CD39 was required for the sup-

pressive effect of ITE in the presence of TGF-b1. Neutralizing

CD39 abrogated the suppressive activity of T cells treated with

TGF-b1 and ITE, similar to that observed for TGF-b1 and

TCDD and consistent with a role for CD39 in this suppressive

function (Figure 2F). Altogether, these data demonstrate that

AHR activation with ITE in the presence of TGF-b1 induces

functional human Tregs that suppress effector T cells in a

CD39-dependent manner in vitro.

T-Cell-Dependent Colitis Model in Humanized Mice
Most experimental immunotherapies successful in treating

experimental autoimmunity in animal models show limited suc-

cess in human clinical trials (Hay et al., 2014; Persidis, 1999).

One important contributor to the limited translational applica-

tion of experimental findings in mice into successful therapies

for human autoimmunity is the lack of models to study the hu-

man immune system in vivo. Over the past decade, immunode-

ficient mice have been developed that are capable of engrafting

human immune cells (Rongvaux et al., 2014; Shultz et al., 2005;

Traggiai et al., 2004). Although sub-optimal adaptive immune

responses are often observed in many humanized murine

systems, we described non-obese diabetic (NOD).Prkdcscid.

Il2rg�/� (NSG) mice that lack murine major histocompatibility

complex (MHC) class II and instead express human leukocyte

antigen (HLA) DR1 under the control of the murine MHC

class II promoter (NSGAb�DR1 mice) (Goettel et al., 2015).

These mice intrinsically lack murine lymphocytes, as well as

natural killer (NK) cells, and when made immune replete using

human CD34+ hematopoietic stem cells (HSCs), the mice

displayed improved human CD4+ T cell responses (Goettel

et al., 2015). To specifically evaluate CD4+ T cell responses,

we used a reductionist approach by reconstituting NSGAb�DR1
mice with human CD4+ T cells isolated from allelically matched

HLA-DR1+ donors. To evaluate the effects of candidate drugs

on human CD4+ T cells in vivo, we adapted an established

experimental model of intestinal inflammation using the

hapten 2,4,6-trinitrobenzenesulfonic acid (TNBS) that is largely

mediated by T cells (Neurath et al., 1995). Reconstituted

NSGAb�DR1 mice were sensitized with TNBS to prime anti-

gen-specific T cells, and 1 week post-sensitization mice were

administered a single rectal enema containing 0.25 mg of

TNBS in 50% ethanol (EtOH) or 50% EtOH as a vehicle control

(Figure 3A). Although reconstituted NSGAb�DR1 mice chal-

lenged with TNBS exhibited significant weight loss 3 days

post-challenge, weight loss was not readily observed in recon-

stituted mice challenged with EtOH or in non-reconstituted

mice challenged with TNBS (Figure 3B). Consistent with these

observations, blinded histological evaluation of colonic sec-

tions stained with H&E revealed extensive crypt and goblet

cell loss with edema, fibrosis, and transmural inflammation

in TNBS-treated NSGAb�DR1 mice reconstituted with human

CD4+ T but not in control mice (Figure 3C), with a histological

colitis score that was significantly higher in TNBS-treated

reconstituted NSGAb�DR1 mice compared to controls (Fig-

ure 3D). This correlated with an increase in CD4+ T cells
Cell Reports 17, 1318–1329, October 25, 2016 1321
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Figure 2. ITE Induces Functional Human FOXP3+ Tregs in the Presence of TGF-b1

(A) Suppressive activity of human naive CD4+ T cells activated with aCD3/aCD28 and TGF-b1 in the presence of CTL, ITE, or TCDD. Percent suppression is

depicted as the mean ± SEM pooled from at least two independent experiments with ten unique donors.

(B) qPCR analysis on RNA isolated from T cells stimulated with aCD3/aCD28 and IL-2 in the presence of CTL, TGF-b1, TGF-b1 + ITE, or TGF-b1 + TCDD. Target

fold change was calculated using vehicle control, with the dashed line representing the normalized control value of 1 and relative expression shown as the pooled

mean ± SEM (n R 10).

(C) Representative flow cytometric analysis of TBX21, GATA3, and RORC protein expression in T cells following activation using aCD3/aCD28 and IL-2 in the

presence of CTL, TGF-b1, or TGF-b1 + ITE from three independent experiments.

(D) qPCR analysis on RNA isolated from T cells stimulated with aCD3/aCD28 in the presence of CTL, TGF-b1, TGF-b1 + ITE, or TGF-b1 + TCDD. Target fold

change was calculated using vehicle control, with the dashed line representing the normalized control value of 1 and relative expression shown as the pooled

mean ± SEM (n R 7). zp < 0.05 compared to control.

(E) Representative flow cytometric analysis of FOXP3, IL10, CD39, and GZMB protein expression in T cells following activation using aCD3/aCD28 and IL-2 in the

presence of CTL, TGF-b1, or TGF-b1 + ITE from two independent experiments.

(F) Effect of CD39 blockade using CD39 blocking antibodies on the suppressive activity of TGF + ITE (left panel) or TGF + TCDD (right panel), with the mean

depicted as ±SEM (n R 12).

*p < 0.05, **p < 0.01, ***p < 0.001.
infiltrating in the colonic lamina propria in TNBS-treated, but

not EtOH-treated, mice (Figure 3E).

In the standard model, TNBS-induced colitis leads to the up-

regulation of several pro-inflammatory cytokines including Tnf,

Il2, Il12a, and Ifng (Hollenbach et al., 2005; Neurath et al.,

1997). We analyzed the expression of human cytokines in the co-

lons of TNBS- or EtOH-treated NSGAb�DR1 mice by qPCR and

found increased expression of TNF, IFNG, IL2, IL4, and IL17A
1322 Cell Reports 17, 1318–1329, October 25, 2016
(Figure 3F). Moreover, human T cells recovered from the colonic

lamina propria of TNBS-treated mice showed increased produc-

tion of TNF and interferon g (IFN-g) following ex vivo stimulation

with phorbol 12-myristate 13-acetate (PMA) and ionomycin (Fig-

ure 3G). Collectively, these data show that human CD4+ T cells

mediate disease pathology in TNBS-induced colitis in human-

ized NSGAb�DR1 mice. Moreover, these data support the use

of this humanized model to assess the efficacy of therapeutics
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Figure 3. TNBS-Induced Colitis Mediated by Human CD4+ T Cells

(A) Schematic of human CD4+ T cell reconstitution and TNBS experimental colitis in NSGAb�DR1 mice.

(B) Change in body weight in NSGAb�DR1 mice reconstituted with human CD4+ T cells 3 days following rectal administration of EtOH as a vehicle control (n = 6),

TNBS (n = 9), or NSGAb�DR1mice without human T cells administered TNBS (n = 7). Each dot represents an individual animal, with the mean depicted as ±SEM.

Data shown are pooled from three independent experiments and are representative of more than six experiments with similar results.

(C) Endoscopic images of representative mice 3 days following TNBS or EtOH challenge (top), with representative H&E-stained colonic sections (bottom) from

three independent experiments (103 magnification).

(D) Colitis scoring of H&E-stained colon sections 3 days following the TNBS or EtOH rectal challenge. Scores for each mouse are shown, with the mean for each

group depicted as ±SEM.

(E) Representative microscopic images of formalin-fixed, paraffin-embedded colonic sections stained for human CD3 from NSGAb�DR1 mice previously re-

constituted with human CD4+ T cells treated with EtOH or TNBS (n = 4) (left) and quantified (right) with bars representing the mean ± SEM (203 magnification).

(F) qPCR analysis on RNA isolated from colonic tissue of reconstituted NSGAb�DR1 mice treated with TNBS or EtOH (n = 6). Human cytokines were normalized

to hypoxanthine phosphoribosyltransferase (HPRT), and the fold change was compared to a pooled human RNA control sample using the formula

2�(Ct(target)�Ct(HPRT)). Bars represent the mean ± SEM.

(G) Representative flow cytometric analysis of human CD4+ T cells isolated from the colonic lamina propria of NSGAb�DR1 mice stimulated with PMA and

ionomycin for 4 hr in the presence of GolgiStop and then stained for intracellular TNF and IFN-g (top) and quantified (bottom) from three independent experiments

(n R 5).

Scale bars, 200 mm. *p < 0.05, **p < 0.01, ***p < 0.001.
that target human CD4+ T cells in promoting intestinal immune

homeostasis. Consistent with our results, recent studies have

showed that the homology of MAdCAM-1 between mice and

humans permits binding of human a4b7 integrin to murine

MAdCAM-1 and that human CD4+ T cells injected into DSS-

treated NSG mice migrate to the colon (Fischer et al., 2016).

ITE Prevents T-Cell-Driven Experimental Colitis in
Humanized Mice
To investigate the effects of ITE on human T cells in vivo, we used

the humanized mouse model described earlier, and 1 week

following engraftment of human CD4+ T cells, mice were admin-

istered daily injections of ITE or PBS as a vehicle control for

5 days. The day following the last ITE or PBS injection, mice

were sensitized to TNBS and 1 week later administered a single

TNBS rectal challenge (Figure 4A). The administration of ITE to

humanized mice followed by the TNBS challenge resulted in a
trend in protection against weight loss compared to control (Fig-

ure 4B). Histological evaluation of H&E-stained colonic sections

showed a significant reduction in the severity of inflammation in

mice receiving ITE that corresponded to a reduction in colitis

score (Figures 4C). This reduction in colitis by ITE correlated

with an increase in the frequency of regulatory human T cells in

the colon based on increased expression of GZMB, CD39,

IL10, and FOXP3 by flow cytometry (Figures 4D). These data

are highly similar to the effects of ITE on human CD4+ T cells

observed in vitro (Figure 1). We further investigated the conse-

quences of ITE treatment on human T cells in vivo by analyzing

the transcriptional profile of CD4+ T cells isolated from the

spleens of ITE- or PBS-treated mice using Nanostring nCounter

arrays. ITE treatment upregulated the expression of several tran-

scription factors andmolecules linked to anti-inflammatory path-

ways in human T cells, including IL10, IL21, IL22, IL32, GZMB,

IKZF2, and IKZF3 (Figure S4A) (Evans et al., 2014; Gandhi
Cell Reports 17, 1318–1329, October 25, 2016 1323
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Figure 4. ITE Prevents T-Cell-Driven Experimental Colitis in Humanized Mice

(A) Schematic of ITE administration in TNBS experimental colitis in NSGAb�DR1 mice reconstituted with human CD4+ T cells.

(B) Body weight change 3 days following TNBS rectal challenge in NSGAb�DR1mice reconstituted with HLA-DR1-matched human CD4+ T cells treated with PBS

(n = 8) or ITE (n = 13). Each dot represents an individual mouse, with the mean depicted as ±SEM pooled from three independent experiments using two unique

HLA-DR1-matched healthy donor sources.

(C) Representative H&E-stained colonic sections 3 days post-TNBS challenge of reconstituted NSGAb�DR1mice treated with PBS (n = 8) or ITE (n = 13) (left), and

colitis score quantified with the mean for each group depicted as ±SEM pooled from three independent experiments with two unique donor sources (right).

(D) Quantified flow cytometric data of human CD4+ T cells isolated from the spleen and colonic lamina propria of PBS- or ITE-treated NSGAb�DR1 mice stained

for humanCD45 (hCD45), GZMB, CD39, and FOXP3 (top), with representative dot plots shown below. Intracellular IL10 staining was performed on T cells isolated

from spleen and colonic lamina propria and stimulated ex vivo with PMA and ionomycin for 4 hr in the presence of GolgiStop. Bars represent the mean ± SEM

pooled from two independent experiments using two unique HLA-DR1-matched healthy donors.

(E) Schematic depicting injection of in vitro-generated autologous ITE-induced suppressive T cells before rectal challenge with TNBS in NSGAb�DR1 mice

previously reconstituted with matched donor CD4+ T cells.

(F) Flow cytometry dot plot showing the recovery of in vitro-generated autologous Tregs (labeled with CellTrace violet before intraperitoneal injection of 23 106

labeled cells) from spleens of humanized mice.

(G) Body weight change 3 days following TNBS rectal challenge in NSGAb�DR1mice reconstitutedwith HLA-DR1-matched humanCD4+ T cells and injectedwith

PBS (n = 9) or autologous in vitro ITE-generated suppressive cells (n = 7) 1 day before TNBS rectal challenge. Each dot represents an individual mouse, with the

mean depicted as ±SEM pooled from two independent experiments using two unique HLA-DR1-matched healthy donor sources.

(H) Representative H&E-stained colonic sections 3 days post-TNBS challenge of reconstituted NSGAb�DR1 mice injected with PBS (n = 9) or CellTrace violet-

labeled autologous ITE-induced Tregs (n = 7) (left), and colitis score quantified with the mean for each group depicted as ±SEM pooled from two independent

experiments (right).

Images are 203 magnification. Scale bars, 100 mm. *p < 0.05.
et al., 2010; Quintana et al., 2012; Sakaguchi et al., 2010).

Although ITE induced cytokine transcripts known to be both

pro- and anti-inflammatory, pathway analysis and functional

gene clustering determined that the most affected gene

sets were linked to several pathways relevant for IBD pathogen-
1324 Cell Reports 17, 1318–1329, October 25, 2016
esis with significant downregulation in TNFR1, death receptor

signaling, and nuclear factor kB (NF-kB) signaling (Figure S4B).

Conversely, ITE treatment led to an upregulation of IL22 (Fig-

ure S4B), a known target of AHR linked to the protection of the

intestinal epithelium (Sonnenberg et al., 2011; Yeste et al., 2014).



Expression of AHR is not restricted to immune cells, and

although our data suggest that the suppressive effects of ITE

in vivo were likely mediated by the effects on human CD4+

T cells, we cannot exclude the possibility that the therapeutic

benefit of ITE in TNBS-induced colitis is mediated by the

activation of AHR in murine cells. To directly test whether

AHR activation by ITE in human T cells was sufficient to atten-

uate TNBS colitis in humanized mice, we first reconstituted

NSGAb�DR1 mice with HLA-matched donor CD4+ T cells. We

then initiated in vitro cultures of autologous human CD4+

T cells as before to induce suppressive T cells. After 6 days of

culture, we labeled the autologous ITE-treated T cells with

CellTrace violet and injected 23 106 cells per mouse.We admin-

istered the rectal TNBS challenge the next day (Figure 4E). We

euthanized themice 3 days post-TNBS challenge and confirmed

the presence of the in vitro-cultured Tregs based on CellTrace vi-

olet staining (Figure 4F). Humanized mice receiving ITE-treated

cells more readily recovered to their initial body weight with

less colonic inflammation and a significantly improved colitis

score (Figures 4G and 4H). Thus, autologous Tregs generated

in vitro were sufficient to protect against TNBS-mediated colitis

in humanized mice.

DISCUSSION

Current strategies for the long-term treatment of IBD and other

inflammatory diseases often depend on broad immunosuppres-

sion that can cause deleterious side effects. Unfortunately, most

experimental immunotherapies developed using rodent models

have had limited success in human clinical trials (Hay et al.,

2014; Persidis, 1999). This is likely due, at least in part, to

inherent physiological differences in immune cells between

mice and humans. We previously described improved human

T cell responses in NSGAb�DR1 mice that express human, but

not murine, MHC class II. Moreover, when these mice were re-

constituted using HSCs isolated from an IPEX patient lacking

functional FOXP3 and Tregs (Goettel et al., 2015), the mice

developed amulti-organ inflammatory syndrome, with the devel-

opment of autoantibodies analogous to patients. We expanded

upon this model and demonstrated that in the presence of

normal human T cells, TNBS administration to NSGAb�DR1
mice resulted in severe intestinal inflammation. Because the

re-establishment of immune tolerance in immune-mediated

diseases has shown early promise in the clinical setting through

the induction or expansion of autologous Tregs (Desreumaux

et al., 2012; Koreth et al., 2011), we investigated whether an

endogenous ligand to AHR could induce human Tregs and

have a therapeutic effect in a humanized mouse model of intes-

tinal inflammation. We and others have previously shown that

AHR activation induces Tregs that suppress the development

of inflammation and experimental autoimmunity in mice (Apetoh

et al., 2010; Kerkvliet et al., 2009; Mascanfroni et al., 2015; Quin-

tana et al., 2008, 2010; Vogel et al., 2008; Wu et al., 2011; Yeste

et al., 2012, 2014; Zhang et al., 2009). Although AHR activation

with TCDD induces functional human Tregs in vitro, toxicity

prevents the use of TCDD as a therapeutic in humans (Gandhi

et al., 2010). Here we demonstrate that the non-toxic AHR

agonist ITE induces functional human Tregs that suppress
effector T cell proliferation in a CD39- and GZMB-dependent

manner in vitro. Furthermore, we employed the TNBS human

CD4+ T cell mouse model of colitis described earlier and demon-

strated that ITE promoted mucosal immune homeostasis and

was protective against colitis development.

For many inflammatory diseases, the effector cytokine profile

of CD4+ T cells can be informative and, in some cases, indicative

of the T cell subset or subsets involved in disease pathogenesis.

The polarization of CD4+ T cells into these specific subsets is

highly regulated by transcription factors that drive Th1, Th2,

and Th17 differentiation, namely, TBX21, GATA3, and RORC,

respectively. We found that ITE, like the toxic AHR ligand

TCDD (Gandhi et al., 2010), downregulated Th1 and Th17 tran-

scription factors TBX21 and RORC, although the expressions

of molecules associated with Treg suppressive function,

including IL10, FOXP3, GZMB, and ENTPD1, were increased.

This suggests that the suppression of effector T cells by ITE likely

occurs by restricting differentiation of Th1 and Th17 effector sub-

sets, in addition to inducing immunoregulatory molecules asso-

ciated with Tregs. Because IL10, GZMB, and CD39 are known to

participate in T cell suppression by Tregs, we tested whether the

suppressive effects of ITE were mediated by any of these three

molecules. ITE-mediated suppression in the absence of TGF-

b1 was dependent on GZMB and CD39 as pharmacological or

antibody-mediated inhibition blocked suppression. Under

Treg-inducing conditions with TGFb, ITE did not alter the expres-

sion of GZMB or ENTPD1, whereas protein levels of CD39 were

increased at the cell surface. This suggests that AHR activation

by ITE may mobilize intracellular pools of CD39 to the plasma

membrane. Although CD39 is an important molecule in Tr1 cell

differentiation and function (Mascanfroni et al., 2015) and was

involved in the suppressive effect of ITE in vitro, it appears that

the suppressive cells induced by ITE may be a mixed population

of FOXP3� Tr1 cells expressing traditional markers CD39,

GZMB, and IL10, as well as FOXP3+ Tregs. We also observed

a population of CD39+ cells that were positive for FOXP3 and

may constitute a Tr1-like cell population previously described

to possess a regulatory phenotype (Borsellino et al., 2007; Dea-

glio et al., 2007; Moncrieffe et al., 2010).

Although IBD is a complex disorder triggered by genetic, envi-

ronmental, and microbial factors, genome-wide association

studies have identified more than 160 polymorphisms associ-

ated with altered risk for IBD (Jostins et al., 2012). Many of these

mutations are known to regulate immune responses, with

several being enriched in immune cells, in particular CD4+

T cells and dendritic cells (Jostins et al., 2012). Although poly-

morphisms in AHR have not yet been associated with IBD,

AHR is known to play a central role in the regulation of intestinal

inflammation and is upregulated in the inflamed gut (Arsenescu

et al., 2011; Benson andShepherd, 2011; Chinen et al., 2015; Fu-

kumoto et al., 2014; Furumatsu et al., 2011; Huang et al., 2013; Ji

et al., 2015; Mascanfroni et al., 2015; Monteleone et al., 2011;

Qiu et al., 2013; Quintana et al., 2012; Singh et al., 2011; Taka-

mura et al., 2010, 2011; Yeste et al., 2014). We and others previ-

ously showed that in T cells, AHR controls the production of IL10

(Apetoh et al., 2010; Gandhi et al., 2010;Mascanfroni et al., 2015;

Wu et al., 2011) and IL-22 (Quintana et al., 2008; Veldhoen et al.,

2008, 2009; Yeste et al., 2014) to modulate and promote
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immunological tolerance in the intestine. Consistent with these

previous findings, our present data demonstrate that AHR acti-

vation by ITE induces a transcriptional program in human CD4+

T cells that promotes IL22 and IL10 expression in vivo.Moreover,

ITE treatment led to an increase in GZMB, CD39, IL10, and

FOXP3, particularly in the colon of humanized mice, and attenu-

ated intestinal inflammation induced by TNBS. Although our

in vivo data are consistent with in vitro findings for ITE inducing

suppressive CD4+ T cells, we cannot exclude the possibility

that some of the protective effects of ITE in vivo could also be

mediated by other cells types that express AHR, including intes-

tinal epithelial cells and murine innate immune cells (Esser and

Rannug, 2015). Nevertheless, we showed that in vitro-generated

autologous ITE-treated T cells could be administered just before

the TNBS challenge and protect against TNBS-induced colitis in

humanized mice. Further investigations on ITE using human

CD4+ T cell reconstituted NSGAb�DR1 mice with established

TNBS-induced colitis are warranted prior to clinical application

aimed at treating IBD.

In conclusion, we have demonstrated that AHR activation with

the non-toxic agonist ITE induces, in the presence or absence of

TGF-b1, human Tregs in vitro that can suppress effector T cell

proliferation in a CD39- and GZMB-dependent manner. Given

the inability to readily assess therapeutics in patients, we devel-

oped a humanized murine system to directly assess the ability of

ITE, as well as other agents, to modulate human CD4+ T cell

responses in vivo. We showed that TNBS-induced colitis in

humanizedmice requires human CD4+ T cells and that ITE atten-

uated colitis development, promoting immunological tolerance.

This model has the advantage that it does not require full human

immune reconstitution using HSCs and can be established using

T cells from healthy controls, as well as patient cells. The use of

this model will facilitate evaluation of potential treatments for IBD

and, more importantly, investigations into the inflammatory

response of human CD4+ T cells from patients with mutations

in loci associated with altered risk for IBD, including IL10R or

IL23R (Duerr et al., 2006; Glocker et al., 2009; Sarin et al.,

2011). This may enable clinicians to stratify patients and distin-

guish responders versus non-responders, leading to tailored

therapeutics.

EXPERIMENTAL PROCEDURES

Antibodies and Reagents

The following flow cytometry antibodies were obtained through BioLegend:

FOXP3, clone 259D; CD39, clone A1; CD45, clone HI30; CD4, clone OKT4;

GZMB, clone GB11; TNF, clone MAb11; and IFNG, clone 4S.B3. The following

flow cytometry antibodies were obtained through eBioscience: GATA3, clone

TWAJ; TBX21, clone eBio4B10; and RORC, clone AFKJS-9. IL10, clone JES3-

19F1, was obtained through BD Biosciences. Anti-CD3, clone OKT3, and anti-

CD28, clone CD28.6, were used for in vitro stimulation and purchased through

eBioscience. TGF-b1 was obtained from R&D Systems. Human recombinant

IL-2 was obtained from the AIDS Research and Reference Reagent Program,

National Institute of Allergy and Infectious Diseases (NIAID). Annexin V-PE/

FITC and 7-AAD were obtained from BD Biosciences.

Isolation of Naive T Cells

Blood samples were collected from healthy controls upon informed consent.

The institutional review board at Brigham and Women’s Hospital approved

all procedures described in this work. PBMCs were obtained by Ficoll density
1326 Cell Reports 17, 1318–1329, October 25, 2016
gradient. Total CD4+ T cells were purified using Miltenyi Biotec AutoMACS,

and CD62Lhigh and CD45RO� T cells were purified by fluorescence-activated

cell sorting (FACS) using FACSAria (BD Biosciences) to typically obtain 96%–

98% purity in post-sort analysis.

T Cell Differentiation

After FACS, naive T cells were activated with plate-bound antibodies to

CD3 (1 mg mL�1), soluble CD28 (1 mg mL�1), and human recombinant IL-2

(50 U/mL) with or without TGF-b1 (1 ng mL�1), in the presence or absence of

100 nM ITE. After 6 days of differentiation, the cells were resorted to exclude

dead cells and were used for suppression assays or analyzed by FACS or

qPCR.

Suppression Assays

Responder T cells (CD4+ T cells) were activated with beads coated with anti-

bodies to CD3 and CD28 (1 mg/107) for 5 days in the presence of Tregs at a 2:1

(responder to regulatory) ratio. Cells were pulsedwith 3H-thymidine (1 mCi/well)

for 16–24 hr at the end of the incubation period. Anti-IL10 (clone 25209) was

purchased from R&D Systems and used at 2.5 mg mL�1. CH223191 was

purchased from Tocris and was used at 10 mM.

Quantitative Real-Time PCR

RNA was extracted with QIAGEN RNAeasy columns; cDNA was prepared

following the manufacturer’s instructions (Applied Biosystems) and used as

a template for real-time PCR. All primers and probes in this workwere provided

by Applied Biosystems and were used on the GeneAmp 7500 Sequence

Detection System (Applied Biosystems). Expression was normalized to the

expression of GAPDH. All murine qPCR primers and reagents were obtained

from Applied Biosystems.

For humanizedmouse studies, qPCRwas performedwith SYBRGreen (Bio-

Rad) using a CFX96 real-time PCR (Bio-Rad) machine on cDNA generated with

the iScript cDNA kit (Bio-Rad) on 1 mg of total RNA isolated from whole tissue

homogenized in TRIzol (Life Technologies). Then, 2 mM of each human target

primer was used in the reaction and quantified by normalizing the cycle

threshold (Ct) of the target gene to the Ct value of HPRT, and the fold change

was compared to a pooled human RNA control sample using the formula

2�(Ct(target)�Ct(HPRT)).

Sequences for human targets are as follows:

IFNG: forward, 50-TCGGTAACTGACTTGAATGTCCA-30; reverse, 50-TCG
CTTCCCTGTTTTAGCTGC-30

TNF: forward, 50-GAGGCCAAGCCCTGGTATG-30; reverse, 50-CGGG

CCGATTGATCTCAGC-30

IL10: forward, 50-GACTTTAAGGGTTACCTGGGTTG-30; reverse, 50-TCA
CATGCGCCTTGATGTCTG-30

IL17A: forward, 50-TCCCACGAAATCCAGGATGC-30; reverse, 50-GGAT

GTTCAGGTTGACCATCAC-30

IL4: forward, 50-CGGCAACTTTGTCCACGGA-30; reverse, 50-TCTGTT

ACGGTCAACTCGGTG-30

IL2: forward, 50-AACTCCTGTCTTGCATTGCAC-30; reverse, 50-GCTCC

AGTTGTAGCTGTGTTT-30

HPRT: forward, 50-CCTGGCGTCGTGATTAGTGAT-30; reverse, 50-AGACG

TTCAGTCCTGTCCATAA-30

TNBS-Induced Colitis and ITE Treatment in Humanized Mice

The generation of NOD.Cg-PrkdcscidIl2rgtm1WjlH2-Ab1tm1D� i.Tg(HLA-DRA*0101,
HLA-DRB1*0101) mice (NSGAb�DR1) was previously described (Goettel

et al., 2015). Mice were maintained in autoclaved cages with autoclaved food

and water ad libitum in the specific pathogen-free facility at Boston Children’s

Hospital. All animal experiments were approved and conducted according

to the institutional guidelines at Boston Children’s Hospital.

The 6–8 week old NSGAb�DR1mice were injected intraperitoneally with 23

106 human CD4+ T cells isolated from a healthy donor that was positive for

the HLA-DRB*0101 allele were purchased from STEMCELL Technologies.

Then, 2–3 weeks later, mice were bled and screened for human T cell recon-

stitution and mice exhibiting greater than 10% human chimerism in peripheral

blood were selected for experimental groups. Mice were first sensitized by



applying 150 mL of a 2.5% TNBS (Sigma-Aldrich) solution in 50% EtOH to a

1 cm2 patch of bare skin at the base of the neck. Seven days later, mice

were anesthetized via a single intraperitoneal injection of saline containing

100 mg kg�1 of ketamine and 10 mg kg�1 of xylazine. Anesthetized mice

were held inverted by hand, and a sterile lubricated 3.5 F soft silicon catheter

inserted into the colon to a distance of 3–4 cm.Micewere given a single enema

containing 0.25 mg of TNBS in a 50% EtOH, 50% PBS mixture in a volume of

50 mL. Mice were then held inverted for 30 s and returned to their cage. Mice

were weighed daily, and colitis was assessed 3 days after the TNBS rectal

challenge. Histological assessment was performed and scored using a

modified system as previously described (Scheiffele and Fuss, 2002). For

ITE-treated mice, 200 mg of ITE dissolved in PBS was administered intraperi-

toneally starting 1 week after injection of human CD4+ T cells for 5 consecutive

days. Mice were then sensitized and challenged as earlier.

Analysis of Cytokine Production by T Cells in Humanized Mice

Total splenocytes and colonic lamina propria cells were plated at a concentra-

tion of 13 106 cells in RPMI 1640 supplemented with 10% fetal bovine serum

(FBS), 2 mM L-glutamine, 1 mM sodium pyruvate, 100 mM non-essential

amino acids, 10 mM HEPES, 55 mM 2-mercaptoethanol, and 100 U/mL peni-

cillin/streptomycin (Life Technologies) (hereafter referred to as T cell media).

Cells were stimulated with stimulated with 20 ng mL�1 PMA and 1 mg mL�1

ionomycin (Sigma-Aldrich) for 4 hr at 37�C in the presence of 10 mg mL�1

GolgiStop (BD Biosciences). Cells were collected and washed 23 with

FACS buffer (PBS supplemented with 2% FBS and 0.1% NaN3). Cell surface

staining for human CD4 was performed for 30 min at room temperature (RT),

washed 23 with FACS buffer, and then fixed using BD Cytofix/Cytoperm

(BD Biosciences) following the manufacturer’s protocol. Cells were then

stained with IFN-g and TNF for 45 min at RT. Cells were washed 23 with

FACS buffer, and intracellular cytokine production was detected using a

three-laser FACSCanto II (BD Biosciences) flow cytometer.

Immunohistochemistry

Histopathology was carried out on formalin-fixed, paraffin-embedded colonic

tissue sections stained with an anti-human CD3 antibody (cat# A0452, Dako).

Images were acquired using an Olympus microscope mounted with an

Olympus DP70 digital camera and DP-Manager software (Olympus) and

were quantified using ImageJ software (NIH).

Statistical Analysis

Statistical analyses were performed using the Prism software (GraphPad), and

t tests were used in Figures 1, 2, 3E–3G, 4B–4D, 4G, 4H, and S2. ANOVA with

multiple comparisons was used in Figures 3B and 3D. p < 0.05 was considered

significant.
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