8 research outputs found

    iPS細胞から誘導した網膜色素上皮細胞の網膜下移植におけるマイコプラズマ眼感染症

    Get PDF
    京都大学0048新制・課程博士博士(医学)甲第22004号医博第4518号新制||医||1038(附属図書館)京都大学大学院医学研究科医学専攻(主査)教授 辻川 明孝, 教授 中川 一路, 教授 高橋 淳学位規則第4条第1項該当Doctor of Medical ScienceKyoto UniversityDFA

    Inhibition of T cell-mediated inflammation in uveitis by a novel anti-CD3 antibody

    No full text
    Abstract Background A novel anti-mouse CD3ε antibody, Dow2, recognizes mouse CD3ε without activating T cells and suppresses T-cell activation. The purpose of this study was to determine whether Dow2 can inhibit T cells in uveitis. Methods Experimental autoimmune uveitis (EAU) was induced in mice by immunization with retinal peptides, followed by administration of Dow2. Inflammation was evaluated by color fundus photography, optical coherence tomography, fluorescein angiography, and histology. Intraocular cells from EAU mice were used to examine the effect of Dow2 on retinal antigen-specific T cells. The effects of Dow2, conventional CD3ε antibodies, and isotype control immunoglobulin G (IgG) on splenic T cells were compared by assessing cell proliferation by the mixed lymphocyte reaction assay, inflammatory cytokine production by enzyme-linked immunosorbent assay (ELISA) and immunohistochemistry, and gene expression by quantitative reverse-transcription polymerase chain reaction (RT-PCR). T-cell subpopulations were characterized by flow cytometry to evaluate the expression of CD4, CD8, CD44, CD62L, and Foxp3. Results Dow2 significantly reduced T-cell activation and counteracted activation associated with anti-CD3ε antibodies. Unlike conventional CD3ε antibodies, Dow2 treatment did not upregulate T helper (Th)1-/Th17-associated gene expression and cytokine production in splenic T cells. Interferon (IFN)-γ production by retinal antigen-specific T cells was also significantly reduced. Ocular inflammation was significantly reduced in Dow2-treated EAU mice compared to control EAU mice, with fewer T cells infiltrating into the retinas of Dow2-treated EAU mice. In immunohistochemistry, Th1 and Th17 cells invaded the retina in control EAU mice but not Dow2-treated EAU mice. No effects on peripheral T-cell numbers were observed following systemic administration of Dow2. Conclusion The novel anti-CD3 antibody Dow2 can inhibit T cell-mediated inflammation in uveitis models. Thus, inhibition of T-cell activation by anti-CD3 therapy with this new antibody may protect uveitis patients from severe ocular inflammation

    Detection of Retinal Pigment Epithelium-Specific Antibody in iPSC-Derived Retinal Pigment Epithelium Transplantation Models

    No full text
    Summary: Antibody-mediated rejection is characterized by donor-specific antibody produced by B cells. However, to our knowledge, B cell invasion and antibody in the inflamed retina after transplantation of retinal pigment epithelial (RPE) cells has not been reported. To determine if RPE transplantation could be performed using allografts, we established in vivo immune rejection models with induced pluripotent stem cell (iPSC)-RPE allografts and determined whether RPE-specific antibody could be detected in these models. We detected alloantibodies in the serum from recipient monkeys that had immune attacks in the retina in an immunofluorescent assay using the transplanted iPSC-RPE cells as the antigen. In addition to T cell and antigen-presenting cell immunity, peripheral blood cells and lymph nodes in animal models with allogeneic iPSC-RPE cells also had activated B cells, which were probably secreting alloantibodies. Using serum and transplanted cells, alloreactive antibody can be detected for the diagnosis of immune rejection after transplantation. : In this article, Sugita and colleagues show that B cells, as well as T cells, are associated with immune attack on iPSC-derived retinal pigment epithelial cells (RPE) after allogeneic transplantation. In addition, it shows that B cells can produce alloantibodies against iPSC-RPE cells. Keywords: induced pluripotent stem cells, retinal pigment epithelial cells, B cells, antibody, immune rejectio

    Successful Transplantation of Retinal Pigment Epithelial Cells from MHC Homozygote iPSCs in MHC-Matched Models

    No full text
    There is an ongoing controversy as to whether major histocompatibility complex (MHC) matching is a solution for allogeneic stem cell transplantation. In the present study, we established retinal pigment epithelial (RPE) cells from induced pluripotent stem cells (iPSCs) in MHC homozygote donors. We observed no rejection signs in iPSC-derived RPE allografts of MHC-matched animal models without immunosuppression, whereas there were immune attacks around the graft and retinal tissue damage in MHC-mismatched models. In an immunohistochemical examination of MHC-mismatched allografts, the transplanted RPE sheets/cells were located in the subretinal space, but the RPE exhibited inflammatory and hypertrophic changes, and many inflammatory cells, e.g., Iba1+ cells, MHC class II+ cells, and CD3+ T cells, invaded the graft area. Conversely, these inflammatory cells poorly infiltrated the area around the transplanted retina if MHC-matched allografts were used. Thus, cells derived from MHC homozygous donors could be used to treat retinal diseases in histocompatible recipients
    corecore