69 research outputs found

    Equipping Sparse Solvers for Exascale (ESSEX / ESSEX II)

    Get PDF
    The ESSEX project is funded by the German DFG priority programme 1648 "Software for Exascale Computing" (SPPEXA). In 2016 it has entered its second funding phase, ESSEX-II. ESSEX investigated programming concepts and numerical algorithms for scalable, efficient and robust iterative sparse matrix applications on exascale systems. Starting with successful blueprints and prototype solutions identified in ESSEX-I, the second phase project ESSEX-II developed a collection of broadly usable and scalable sparse eigenvalue solvers with high hardware efficiency for the computer architectures to come. Project activities were organized along the traditional software layers of low-level parallel building blocks (kernels), algorithm implementations, and applications. The classic abstraction boundaries separating these layers were broken in ESSEX by strongly integrating objectives: scalability, numerical reliability, fault tolerance, and holistic performance and power engineering. The basic building block library supports an elaborate MPI+X approach that is able to fully exploit hardware heterogeneity while exposing functional parallelism and data parallelism to all other software layers in a flexible way. In addition, facilities for fully asynchronous checkpointing, silent data corruption detection and correction, performance assessment, performance model validation, and energy measurements are provided transparently. The advanced building blocks were defined and employed by the developments at the algorithms layer. Here, ESSEX-II provides state-of-the-art library implementations of classic linear sparse eigenvalue solvers including block Jacobi-Davidson, Kernel Polynomial Method (KPM), and Chebyshev filter diagonalization (ChebFD) that are ready to use for production on modern heterogeneous compute nodes with best performance and numerical accuracy. Research in this direction included the development of appropriate parallel adaptive AMG software for the block Jacobi-Davidson method. Contour integral-based approaches were also covered in ESSEX-II and were extended in two directions: The FEAST method was further developed for improved scalability, and the Sakurai-Sugiura method (SSM) method was extended to nonlinear sparse eigenvalue problems. These developments were strongly supported by additional Japanese project partners from University of Tokyo, Computer Science, and University of Tsukuba, Applied Mathematics. The applications layer delivers scalable solutions for conservative (Hermitian) and dissipative (non- Hermitian) quantum systems with strong links to optics and biology and to novel materials such as graphene and topological insulators. This talk gives a survey on latest results of the ESSEX-II project

    Radiofrequency ablation followed by radiation therapy for large primary lung tumors

    Get PDF
    We report the clinical experience of radiofrequency ablation followed by radiation therapy for large primary lung tumors. Two patients with large primary lung tumors were treated with combined radiofrequency ablation and radiation therapy, and good local control was observed. Combined radiofrequency ablation and radiation therapy that involves minimally invasive techniques appears to be promising for the treatment of large lung tumors

    Random regression for modeling soybean plant response to irrigation changes using time-series multispectral data

    Get PDF
    Plant response to drought is an important yield-related trait under abiotic stress, but the method for measuring and modeling plant responses in a time series has not been fully established. The objective of this study was to develop a method to measure and model plant response to irrigation changes using time-series multispectral (MS) data. We evaluated 178 soybean (Glycine max (L.) Merr.) accessions under three irrigation treatments at the Arid Land Research Center, Tottori University, Japan in 2019, 2020 and 2021. The irrigation treatments included W5: watering for 5 d followed by no watering 5 d, W10: watering for 10 d followed by no watering 10 d, D10: no watering for 10 d followed by watering 10 d, and D: no watering. To capture the plant responses to irrigation changes, time-series MS data were collected by unmanned aerial vehicle during the irrigation/non-irrigation switch of each irrigation treatment. We built a random regression model (RRM) for each of combination of treatment by year using the time-series MS data. To test the accuracy of the information captured by RRM, we evaluated the coefficient of variation (CV) of fresh shoot weight of all accessions under a total of nine different drought conditions as an indicator of plant’s stability under drought stresses. We built a genomic prediction model (MTRRM model) using the genetic random regression coefficients of RRM as secondary traits and evaluated the accuracy of each model for predicting CV. In 2020 and 2021,the mean prediction accuracies of MTRRM models built in the changing irrigation treatments (r = 0.44 and 0.49, respectively) were higher than that in the continuous drought treatment (r = 0.34 and 0.44, respectively) in the same year. When the CV was predicted using the MTRRM model across 2020 and 2021 in the changing irrigation treatment, the mean prediction accuracy (r = 0.46) was 42% higher than that of the simple genomic prediction model (r =0.32). The results suggest that this RRM method using the time-series MS data can effectively capture the genetic variation of plant response to drought

    Benefits from using mixed precision computations in the ELPA-AEO and ESSEX-II eigensolver projects

    Get PDF
    We first briefly report on the status and recent achievements of the ELPA-AEO (Eigenvalue Solvers for Petaflop Applications - Algorithmic Extensions and Optimizations) and ESSEX II (Equipping Sparse Solvers for Exascale) projects. In both collaboratory efforts, scientists from the application areas, mathematicians, and computer scientists work together to develop and make available efficient highly parallel methods for the solution of eigenvalue problems. Then we focus on a topic addressed in both projects, the use of mixed precision computations to enhance efficiency. We give a more detailed description of our approaches for benefiting from either lower or higher precision in three selected contexts and of the results thus obtained

    Changes in conditional net survival and dynamic prognostic factors in patients with newly diagnosed metastatic prostate cancer initially treated with androgen deprivation therapy

    Get PDF
    Background The purpose of this study was to identify predictive factors associated with conditional net survival in patients with metastatic hormone-naive prostate cancer (mHNPC) initially treated with androgen deprivation therapy (ADT). Methods At nine hospitals in Tohoku, Japan, the medical records of 605 consecutive patients with mHNPC who initially received ADT were retrospectively reviewed. The Pohar Perme estimator was used to calculate conditional net cancer-specific survival (CSS) and overall survival (OS) for up to 5 years subsequent to the diagnosis. Using multiple imputation, proportional hazard ratios for conditional CSS and OS were calculated with adjusted Cox regression models. Results During a median follow up of 2.95 years, 208 patients died, of which 169 died due to progressive prostate cancer. At baseline, the 5-year CSS and OS rates were 65.5% and 58.2%, respectively. Conditional 5-year net CSS and OS survival gradually increased for all the patients. In patients given a 5-year survivorship, the conditional 5-year net CSS and OS rates improved to 0.906 and 0.811, respectively. Only the extent of disease score (EOD) >= 2 remained a prognostic factor for CSS and OS up to 5 years; as survival time increased, other variables were no longer independent prognostic factors. Conclusions The conditional 5-year net CSS and OS in patients with mHNPC gradually increased; thus, the risk of mortality decreased with increasing survival. The patient\u27s risk profile changed over time. EOD remained an independent prognostic factor for CSS and OS after 5-year follow-up. Conditional net survival can play a role in clinical decision-making, providing intriguing information for cancer survivors

    Prognostic significance of early changes in serum biomarker levels in patients with newly diagnosed metastatic prostate cancer

    Get PDF
    We evaluated the impact of early changes in serum biomarker levels on the survival of patients with metastatic hormone-sensitive prostate cancer (mHSPC) who were initially treated with androgen deprivation therapy (ADT). We retrospectively investigated 330 patients with mHSPC whose serum maker levels were at baseline and at 2-4 months. An optimal Cox regression model was established with the highest optimism-corrected concordance index based on 10-fold cross-validation. The median cancer-specific survival (CSS) and overall survival (OS) were 7.08 and 6.47 years (median follow-up, 2.53 years), respectively. In the final optimal Cox model with serum biomarker levels treated as time-varying covariates, prostate-specific antigen (PSA), hemoglobin (Hb), and alkaline phosphatase (ALP) significantly increased the risk of poor survival in the context of both CSS and OS. Kaplan-Meier curves stratified by the three risk factors of high PSA, low Hb and high ALP desmondtated that median OS were not reached with none of these factors, 6.47 years with one or two factors, and 1.76 years with all three factors. Early changes in serum biomarker levels after ADT may be good prognostic markers for the survival of patients with mHSPC

    Evolutionary histories of breast cancer and related clones

    Get PDF
    乳がん発生の進化の歴史を解明 --ゲノム解析による発がんメカニズムの探索--. 京都大学プレスリリース. 2023-07-28.Tracking the ol' mutation trail: Unraveling the long history of breast cancer formation. 京都大学プレスリリース. 2023-08-31.Recent studies have documented frequent evolution of clones carrying common cancer mutations in apparently normal tissues, which are implicated in cancer development1, 2, 3. However, our knowledge is still missing with regard to what additional driver events take place in what order, before one or more of these clones in normal tissues ultimately evolve to cancer. Here, using phylogenetic analyses of multiple microdissected samples from both cancer and non-cancer lesions, we show unique evolutionary histories of breast cancers harbouring der(1;16), a common driver alteration found in roughly 20% of breast cancers. The approximate timing of early evolutionary events was estimated from the mutation rate measured in normal epithelial cells. In der(1;16)(+) cancers, the derivative chromosome was acquired from early puberty to late adolescence, followed by the emergence of a common ancestor by the patient’s early 30s, from which both cancer and non-cancer clones evolved. Replacing the pre-existing mammary epithelium in the following years, these clones occupied a large area within the premenopausal breast tissues by the time of cancer diagnosis. Evolution of multiple independent cancer founders from the non-cancer ancestors was common, contributing to intratumour heterogeneity. The number of driver events did not correlate with histology, suggesting the role of local microenvironments and/or epigenetic driver events. A similar evolutionary pattern was also observed in another case evolving from an AKT1-mutated founder. Taken together, our findings provide new insight into how breast cancer evolves
    corecore