Equipping Sparse Solvers For Exascale

Christie L. Alappat, Andreas Alvermann, Achim Basermann, Holger Fehske,
Yasunori Futamura, Martin Galgon, Georg Hager, Sarah Huber, Akira Imakura,
Masatoshi Kawai, Moritz Kreutzer, Bruno Lang, Kengo Nakajima, Melven
Rohrig-Zollner, Tetsuya Sakurai, Faisal Shahzad, Jonas Thies, and Gerhard Wellein

Abstract The ESSEX project has investigated programming concepts, data struc-
tures, and numerical algorithms for scalable, efficient, and robust sparse eigenvalue
solvers on future heterogeneous exascale systems. Starting without the burden of
legacy code, a holistic performance engineering process could be deployed across
the traditional software layers to identify efficient implementations and guide sus-
tainable software development. At the basic building blocks level, a flexible MPI+X
programming approach was implemented together with a new sparse data struc-
ture (SELL-C-0) to support heterogeneous architectures by design. Furthermore,
ESSEX focused on hardware-efficient kernels for all relevant architectures and ef-
ficient data structures for block vector formulations of the eigensolvers. The al-
gorithm layer addressed standard, generalized, and nonlinear eigenvalue problems
and provided some widely usable solver implementations including a block Jacobi-
Davidson algorithm, contour-based integration schemes, and filter polynomial ap-
proaches. Adding to the highly efficient kernel implementations, algorithmic ad-
vances such as adaptive precision, optimized filtering coefficients, and precondi-
tioning have further improved time to solution. These developments were guided by

Gerhard Wellein, Christie L. Alappat, Georg Hager, Moritz Kreutzer, Faisal Shahzad
Department of Computer Science and Erlangen Regional Computing Center (RRZE), Friedrich-
Alexander Universitit Erlangen-Niirnberg, e-mail: gerhard.wellein@fau.de

Melven Rohrig-Zollner, Jonas Thies, Achim Basermann
Simulation and Software Technology, German Aerospace Center

Martin Galgon, Sarah Huber, Bruno Lang
Angewandte Informatik, Bergische Universitit Wuppertal

Andreas Alvermann, Holger Fehske
Institute of Physics, Universitit Greifswald

Masatoshi Kawai, Kengo Nakajima
Information Technology Center, University of Tokyo

Yasunori Futamura, Akira Imakura, Tetsuya Sakurai
Department of Computer Science, University of Tsukuba

gerhard.wellein@fau.de

2 Wellein et al.

the field of quantum physics applications, and especially by current topics such as
topological insulator systems or problems from graphene research. For these, Sca-
MaC, a scalable matrix generation framework for a broad set of quantum physics
problems, was developed. As the central software core of ESSEX, the PHIST library
for sparse linear and eigenvalue problems has been established. It abstracts algorith-
mic developments from low-level optimization. Finally, central ESSEX software
components and solvers have demonstrated scalability and hardware efficiency on
up to 256 K cores using million-way process/thread-level parallelism.

1 Introduction

The efficient solution of linear systems or eigenvalue problems involving large
sparse matrices has been an active research field in parallel and high performance
computing for many decades. Software packages like Trilinos [33]] or PETSc [9]
have been developed to great maturity, and algorithmic improvements were accom-
panied by advances in programming abstractions addressing, e.g., node-level het-
erogeneity (cf. Kokkos [19]). Completely new developments such as Ginkg are
rare and do not focus in large-scale applications or node-level efficiency.

Despite projections from the late 2000s, hardware architectures have not devel-
oped away from traditional clustered multicore systems. However, a clear trend of
increased node-level parallelism and heterogeneity has been observed. Although
several new architectures entered the field (and some vanished again), the basic
concepts of core-level code execution and data parallelism have not changed. This
is why the MPI+X concept is still a viable response to the challenge of hardware
diversity.

Performance analysis of highly parallel code typically concentrated on scalabil-
ity, but provably optimal node-level performance was rarely an issue. Moreover,
strong abstraction boundaries between linear algebra building blocks, solvers, and
applications made it hard to get a holistic view on a minimization of time to solution,
encompassing optimizations in the algorithmic and implementation dimensions.

In this setting, the ESSEX project took the opportunity to start from a clean slate,
deliberately breaking said abstraction boundaries to investigate performance bottle-
necks together with algorithmic improvements from the core to the highly parallel
level. Driven by the targeted application fields, bespoke solutions were developed
for selected algorithms and applications. The experience gained in the development
process will lead the way towards more generic approaches rather than compete
with established libraries in terms of generality. The overarching motif was a con-
sistent performance engineering process that coordinated all performance-relevant
activities across the different software layers [[113L[20L/53H56L|63L/66].

Consequently, the ESSEX parallel building blocks layer implemented in the
GHOST library [57] supports MPI+X, with X being a combination of node-level

Uhttps://github.com/ginkgo-project/ginkgo

https://github.com/ginkgo-project/ginkgo

Equipping Sparse Solvers For Exascale 3

programming models able to fully exploit hardware heterogeneity, functional paral-
lelism, and data parallelism. Despite fluctuations in hardware architectures and new
programming models hitting the market every year, OpenMP or CUDA is still the
most promising and probably most sustainable choice for X, and ESSEX-II adhered
to it. In addition, engineering highly specialized kernels including sparse-matrix
multiple-vector operations and appropriate data structures for all relevant compute
architectures provided the foundation for hardware- and energy-efficient large-scale
computations.

Building on these high-performance building blocks, one focus of the algorithm
layer was put on the block formulation of Jacobi-Davidson [66] and filter diagonal-
ization [53]] methods, the hardware efficiency of preconditioners [46-48||, and the
development of hardware-aware coloring schemes [1f]. In terms of scalability, the
project has investigated new contour-based integration eigensolvers [24,26] that
can exploit additional parallelism layers beyond the usual data parallelism. The
solvers developed in ESSEX can tackle standard, generalized, and nonlinear eigen-
value problems and may also be used to extract large bulks of extremal and inner
eigenvalues.

The applications layer applies the algorithms and building blocks to deliver scal-
able solutions for topical quantum materials like graphene, topological insulators,
or superconductors, and nonlinear dynamical systems like reaction-diffusion sys-
tems. A key issue for large-scale simulations is the scalable (in terms of size and
parallelism) generation of the sparse matrix representing the model Hamiltonian.
Our matrix generation framework ScaMaC can be integrated into application code
to allow the on-the-fly, in-place construction of the sparse matrix. Beyond the ES-
SEX application fields, matrices from many other relevant areas can be produced by
ScaMacC.

The PHIST library [81] is the sustainable outcome of the performance-centric
efforts in ESSEX. It is built on a rigorous software and performance engineering
process, comprises diverse solver components, and supports multiple backends (e.g.,
Trilinos, PETSc, ESSEX kernels). It also interfaces to multiple languages such as
C, C++, Fortran 2003, and Python. The CRAFT library [[75] provides user-friendly
access to fault tolerance via checkpoint/restart and automatic recovery for iterative
codes using standard C++.

Scalabilty, performance, and portability have been tested on three top-10 su-
percomputers covering the full range of architecures available during the ES-
SEX project time frame: Piz Daint| (heterogeneous CPU-GPU), OakForest-PACﬂ
(many-core), and SuperMUC-NG’|(standard multi-core).

This review focuses on important developments in ESSEX-II. After present-
ing a brief overview of the most relevant achievements in the first project phase
ESSEX-I in Section [2] Section [3] details algorithmic developments in ESSEX-II,
notably with respect to preconditioners and projection-based methods for obtaining

2 https://www.cscs.ch/computers/piz-daint/
3ttps://www.cc.u-tokyo.ac. jp/en/supercomputer/ofp/service/
4https://doku.lrz.de/display/PUBLIC/SuperMUC-NG

https://www.cscs.ch/computers/piz-daint/
https://www.cc.u-tokyo.ac.jp/en/supercomputer/ofp/service/
https://doku.lrz.de/display/PUBLIC/SuperMUC-NG

4 Wellein et al.

inner eigenvalues. Moreover, we present the RACE (Recursive Algebraic Coloring
Engine) method, which delivers hardware-efficient graph colorings for paralleliza-
tion of algorithms and kernels with data dependencies. In Section f] we showcase
performance and parallel efficiency numbers for library components developed in
ESSEX-II that are of paramount importance for the application work packages:
GPGPU-based tall and skinny matrix-matrix multiplication and the computation of
inner eigenvalues using polynomial filter techniques. Section [5] describes the soft-
ware packages that were developed to a usable and sustainable state, together with
their areas of applicability. In Section [§] we show application results from the im-
portant areas of quantum physics and nonlinear dynamical systems. Finally, in Sec-
tion [/| we highlight the collaborations sparked and supported by SPPEXA through
the ESSEX-II project.

2 Summary of the ESSEX-I software structure

The Exascale-enabled Sparse Solver Repository (ESSR) was developed along the
requirements of the algorithms and applications under investigation in ESSEX.
It was not intended as a full-fledged replacement of existing libraries like Trili-
nosE] [33[], but rather as a toolbox that can supply developers with blueprints as a
starting point for their own developments. In ESSEX-I, the foundations for a sus-
tainable software framework were laid. See Section [5|for developments in ESSEX-
IL
The initial version of the ESSR [80] comprised four components:

e GHOST (General, Hybrid and Optimized Sparse Toolkit) [57]], a library of ba-
sic sparse and dense linear algebra building blocks that are not available in
this form in other software packages. The development of GHOST was strictly
guided by performance engineering techniques; implementations of standard ker-
nels such as sparse matrix-vector multiplication (spMVM) and sparse matrix-
multiple-vector multiplication (spMMVM) as well as tailor-made fused kernels,
for instance those employed in the Kernel Polynomial Method (KPM) [84], were
modeled using the roofline model. GHOST supports, by design, strongly hetero-
geneous environments using the MPI+X approach. See [52] for a comprehensive
overview of GHOST and its building blocks.

e ESSEX-Physics, a collection of prototype implementations of polynomial eigen-
solvers such as the KPM and Chebyshev Filter Diagonalization (ChebFD). These
were implemented on top of GHOST using tailored kernels and were shown to
perform well on heterogeneous CPU-GPU systems [55].

e PHIST (Pipelined Hybrid-parallel Iterative Solver Toolkit), which comprises
Jacobi-Davidson type eigensolvers and Krylov methods for linear systems. One
important component is a test framework that allows for continuous integration
(CI) throughout the development cycle. PHIST can not only use plain GHOST as

Shttps://trilinos.org/

https://trilinos.org/

Equipping Sparse Solvers For Exascale 5

el
£
o
"
©
(0]
£
(@)
%]
©
(0]
£
o
%]
(a) SELL-6-1, (b) SELL-6-12, (c) SELL-6-24,
B =0.51 B =0.66 B =0.84

Fig. 1: Variants of the SELL-C-0 storage format. Arrows indicate the storage order
of matrix values and column indices. Image from [54].

its basic linear algebra layer; it is also equipped with fallback kernel implemen-
tations and adapters for the Trilinos and Anasazi libraries. A major achievement
in the development of PHIST was an efficient block Jacobi-Davidson eigenvalue
solver, which could be shown to have significant performance advantages over
nonblocked versions when using optimized building blocks from GHOST [[66].

e BEAST (Beyond fEAST), which implements innovative projection-based eigen-
solvers motivated by the contour integration-based FEAST method [24]. The
ESSEX-I project has contributed to improving FEAST in two ways: by proposing
techniques for solving or avoiding the linear systems that arise, and by improving
robustness and performance of the algorithmic scheme.

A pivotal choice for any sparse algorithm implementation is the sparse matrix
storage format. In order to avoid data conversion and the need to support multi-
ple hardware-specific formats in a single code, we developed the SELL-C-c for-
mat [54]). It shows competitive performance on the dominating processor architec-
tures in HPC: standard multicore server CPUs with short-vector single instruction
multiple data (SIMD) capabilities, general-purpose graphics processing units (GPG-
PUs), and many-core designs with rather weak cores such as the Intel Xeon Phi.
SELL-C-o circumvents the performance penalties of matrices with few nonzero en-
tries per row on architectures on which SIMD vectorization is a key element for
performance even with memory-bound workloads.

In order to convert a sparse matrix to SELL-C-o, its rows are first sorted ac-
cording to their respective numbers of nonzeros. This sorting is performed across
row blocks of length o. After that, the matrix is cut into row blocks of length C.
Within each block, rows are padded with zeros to equal length and then stored in

6 Wellein et al.

column-major order. See Figure |I| for visualizations of SELL-C-c with C = 6 and
o € {1,12,24}. Incidentally, known and popular formats can be recovered as cor-
ner cases: SELL-1-1 is the well-known CSR storage format and SELL-N-1 is ELL-
PACK. The particular choice of C and o influences the performance of the spMVM
operation; optimal values are typically matrix- and hardware-dependent. However,
in practice one can usually find parameters that yield good performance across ar-
chitectures for a particular matrix. A roofline performance model was constructed
in [54] that sets an upper limit for the spMVM performance for any combination of
matrix and architecture. This way, “bad” performance is easily identified. SELL-C-
o was quickly adopted by the community and is in use, in pure or adapted form, in
many performance-oriented projects [54(6,28,61},82].

3 Algorithmic Developments

In this section we describe selected developments within ESSEX-II on the algo-
rithmic level, in particular preconditioners for the solution of linear systems that
occur in the eigensolvers, a versatile framework for computing inner eigenvalues,
and a nonlinear eigensolver. We also cover a systematic comparison of contour-
based methods. We close the section with the introduction of RACE, which is an
algorithmic development for graph coloring guided by the constraints of hardware
efficiency.

3.1 Preconditioners (ppOpen-SOL)

Two kinds of solvers have been developed: a preconditioner targeting the ill-
conditioned large scale problems arising in the BEAST-C method (cf. Sect.[3.2)) and
a multigrid solver targeting problems arising from finite difference discretizations
of partial differential equations (PDEs).

3.1.1 Regularization

The BEAST-C method leads to a large number of ill-conditioned linear systems with
complex diagonal shifts [26]. Furthermore, in many of our quantum physics applica-
tions, the system matrices have small (and sometimes random) diagonal elements. In
order to apply a classic incomplete Cholesky (IC) factorization preconditioner, we
used two types of regularization to achieve robustness: a blocking technique (BIC)
and an additional diagonal shift [47]. Using this approach, we solved a set of 120
prototypical linear systems from this context (e.g., BEAST-C applied to quantum
physics applications). Due to the complex shift, the system matrix is symmetric but
not Hermitian. Hence we use an adaptation of the Conjugate Gradient (CG) method

Equipping Sparse Solvers For Exascale 7

for complex symmetric matrices called COCG (conjugate orthogonal conjugate gra-
dient [83]).

The blocking technique is a well-known approach for improving the convergence
rate. In this study, we apply the technique not only for better convergence but also
for more robustness. The diagonal entries in the target equations are small. By ap-
plying the blocking technique, the diagonal blocks to be inverted include larger
off-diagonal entries.

The diagonal shifting is a direct measure for transforming the ill-conditioned ma-
trices to be more diagonally dominant before performing the incomplete factoriza-
tion. On the other hand, this may deteriorate the convergence of the overall method.
We therefore investigate the best value for the diagonal shifting for our applications.

140 ‘ faster slower M solved lunconverged|

120

100

80

60

Number of cases

40

20

no-shift (0.0, 1.0)shift
BIC-COCG(4) BIC-COCG(64)

Fig. 2: Effect of the regularized IC preconditioner with the COCG method. By using
the diagonal shifted block IC-COCG (BIC-COCG), we can solve all test problems
from our benchmark set.

Figure 2 shows the effect of the regularized IC preconditioner with the COCG
method. By using the diagonal shifted block IC-COCG (BIC-COCG), we solve all
target linear systems.

3.1.2 Hierarchical parallel reordering

In this section, we present scalability results for the BIC preconditioner parallelized
by a hierarchical parallel graph coloring algorithm. This approach yields an almost

8 Wellein et al.

constant convergence rate with respect to the number of compute nodes, and good
parallel performance.

Node-wise multi-coloring (with domain decomposition between nodes) is widely
used for parallelizing IC preconditioners on clusters of shared memory CPUs. Such
“localized” multi-coloring leads to a loss of robustness of the regularized IC-COCG
method, and the convergence rate decreases at high levels of parallelism. To solve
this problem, we parallelize the block IC preconditioner for the hybrid-parallel clus-
ter system. In addition, we proposed the hierarchical parallelization for the multi-
coloring algorithms [46]. This versatile scheme allows us to parallelize almost any
multi-coloring algorithm.

Figure [3] shows the number of iterations and computational time of the BIC-
COCG method on the Oakleaf-FX cluster, using up to 4,800 nodes. The benchmark
matrix is the Hamiltonian of a graphene sheet simulation with more than 500 million
linear equations, for which interior eigenvalues are of interest [[26]. Hierarchical
parallelization yields almost constant convergence with respect to the number of
nodes. The computational time with 4,600 nodes is 30 times smaller than with 128
nodes, amounting to a parallel efficiency of 83.5% if the 128-node case is taken as
the baseline.

5000 35000
Q
® 30000
= — 4000 ”
c wn c
ooz 25000 §
o £=
o & ©
g oo 3000 20000 &
: s
c
> _g 2000 15000 g
g Q [
5 2 10000 5
5 = 1000 <@-Performance =
& Number of iterations 5000
0 0
0 1000 2000 3000 4000 5000

Number of nodes

Fig. 3: Computational time and convergence of BIC-COCG for a graphene bench-
mark problem (strong scaling).

3.1.3 Multiplicative Schwarz-type block red-black GauB-Seidel smoother

Multigrid methods are among the most useful preconditioners for elliptic PDEs.
In [49] we proposed a multiplicative Schwarz block red/black Gauf3-Seidel (MS-
BRB-GS) smoother for geometric multigrid methods. It is a modified version of

Equipping Sparse Solvers For Exascale 9

the block red-black GauB3-Seidel (BRB-GS) smoother that improves convergence
rate and data locality by applying multiple consecutive Gau3-Seidel sweeps on each
block.

The unknowns are divided into blocks so that the amount of data for processing
each block fits into the cache, and o GauB3-Seidel iterations are applied to the block
per smoother step. The computational cost for the additional iterations is much lower
than for the first iteration because of data locality.

Figure [shows the effect of the MS-BRB-GS(a) smoother on a single node of
the ITO system (Intel Xeon Gold 6154 (Skylake-SP) Cluster at Kyushu University).
By increasing the number of both pre- and post-smoothing steps, the number of
iterations is decreased. In the best case, MS-BRB-GS is 1.64 x faster than BRB-GS.

Post—smoothing

1 2 3 4 5 6 7 8 9 10
2.74/10 2.25/8 2.30/8 2.39/8 2.21/7) 2.29/7) 2.38/7 2.48/7 2.59/7 2.712/7| | fast
2.25/8 2.01/8 2.11/7 1.82/6 1.90/6 1.99/6 2.08/7 2.17/6 2.28/6| 2.36/6|
2.02/7 2.08/7 1.82/6 1.87/6 1.95/6 2.03/6 2.12/6/ 2.17/6 2.28/6| 2.36/6|
2.08/7 1.82/6/ 1.87/6 1.90/6 1.67/5 1.74/5 1.82/5 1.89/5 1.96/5 2.03/5|
2.15/7 1.89/6(1.97/6f 1.66/5 1.72/5 1.74/5 1.84/5 1.95/5 2.00/5 2.09/5
2.25/7 1.97/6/ 1.68/5 1.66/5 1.79/5 1.85/5 1.84/5 1.95/5 2.08/5 2.16/5|
2.36/7 2.07/6 1.77/9 1.79/5 1.85/5 1.93/5 1.99/5 2.07/5 2.08/5 2.24/5|
2.10/6| 2.15/6(1.82/5 1.88/5 1.94/5 2.01/5 2.08/5 2.17/5 2.24/5 2.33/5
2.22/6 2.15/6 1.82/5 1.96/5 2.02/5 2.08/5 2.17/5 2.17/5 2.32/5 2.41/5 Islow
2.31/6(2.36/6) 2.01/5 2.04/5 2.10/5 2.18/5 2.24/5 2.33/5 2.40/5 2.47/5|

Pre—
smoothing

O O |INlD|O|S|W[(N—=

—_
o

Fig. 4: Computational time and number of iterations of a geometric multigrid solver
with the MS-BRB-GS(&) smoother.

3.2 The BEAST framework for interior definite generalized
eigenproblems

The BEAST framework targets the solution of interior definite eigenproblems
AX = BXA

i.e., for finding all eigenvectors and eigenvalues of a definite matrix pair (A,B),
with A and B Hermitian and B additionally positive definite, within a given interval
[A,A]. The framework is based on the Rayleigh-Ritz subspace iteration procedure,
in particular the spectral filtering approach: Arbitrary continuous portions of the
spectrum may be selected for computation with appropriate filtering functions that
are applied via an implicit approximate projector to compute a suitable subspace

10 Wellein et al.

basis. Starting with an initial subspace Y, the following three main steps are repeated
until a suitable convergence criterion is met:

Compute a subspace U by approximately projecting Y

Rayleigh-Ritz extraction: solve the reduced eigenproblem AyV = ByV A,
where Ay = U¥AU, By = U"BU, and let X = UV

Obtain new Y from X or U

In the following we highlight some of BEAST’s algorithmic features, skipping other
topics such as locking converged eigenpairs, adjusting the dimension of the sub-
space, and others.

3.2.1 Projector types

BEAST provides three variants of approximate projectors. First, polynomial ap-
proximation (BEAST-P) using Chebyshev polynomials, which only requires matrix
vector multiplications but is restricted to standard eigenproblems. Second, Cauchy
integral-based contour integration (BEAST-C), as in the FEAST method [64]. As
a third method, an iterative implementation of the Sakurai-Sugiura method [|69] is
available (BEAST-M), which shares algorithmic similarities with FEAST. In the
following we briefly elaborate on the algorithmic ideas.

e In BEAST-P, we have U = p(A) - Y with a polynomial p(z) = Y'{_,ciTx(z) of
suitable degree d. Here, Tj denotes the kth Chebyshev polynomial,

Toz) =1, Ti(z) =2z, Ti(z) =22-Tj—1(z) = Ti2(z), k> 2.

Due to the use of the 7%, this method is also known as Chebyshev filter diagonal-
ization.

In addition to well-known methods for computing the coefficients ¢ [18}|63],
BEAST also provides the option of using new, improved coefficients [25]]. Their
computation depends on two parameters, (t and ¢, and for suitable combinations
of these, the filtering quality of the polynomial can be improved significantly;
see Figure |5} which shows the “gain,” i.e., the reduction of the width of those 4
values outside the search interval, for which a damping of corresponding eigen-
vectors by at least a factor 100 cannot be guaranteed. For some combinations
(o, 1), marked red in the picture, this “no guarantee” area can be reduced by
a factor of more than 2, which in turn allows using lower-degree polynomials
to achieve comparable overall convergence. A parallelized method for finding
suitable parameter combinations and computing the ¢y is included with BEAST.

e In BEAST-C, the exact projection

1
— [dz (zB—A)"'BY
Zni/r 2 (:B—4)

(integration is over a contour I in the complex plane that encloses the eigen-

values A € [A,A], but no others) is approximated using an N-point quadrature

Equipping Sparse Solvers For Exascale 11

log2(1)

-1 1.5
0.5
0 1
05
1 0.5
15
2 " 0
2.5
% 0.5 1 15 2 2.5 3 0%
o

Fig. 5: Base-2 log of the “gain” from using modified coefficients with parameters

(o

, 1) for the interval [A,A] = [—0.584, —0.560] (matrix scaled such that spec(A) =

[—1,+1]) and degree d = 1600.

rule,

N
U=Y w;(zB—A)'BY,
j=1

leading to N linear systems, where the number of right-hand sides (RHS) corre-
sponds to the dimension of the current subspace U (and Y).

BEAST-M is also based on contour integration, but moments are used to reduce
the number of RHS in the linear systems. Taking /M moments, we have

N
U=[U,...,Uy-1] with U= Z (IJjZ];(ZjB—A)leY,

j=1
and thus an M times smaller number of RHS (dimension of Y) is sufficient to
achieve the same dimension of U.

The linear systems in the contour-based schemes may be ill-conditioned if the in-
tegration points z; are close to the spectrum (this happens, e.g., for narrow search

intervals [A,A]); cf. alsoandfor approaches to address this issue.

3.2.2 Flexibility, adaptivity and auto-tuning

The BEAST framework provides flexibility at the algorithmic, parameter, and work-
ing precision levels, which we describe in detail in the following.

12 Wellein et al.

Algorithmic level

The projector can be chosen from the three types described above, and the type may
even be changed between iterations. In particular, an innovative subspace-iterative
version of Sakurai-Sugiura methods (SSM) has been investigated for possible cost
savings in the solution of linear systems via a limited subspace size and the overall
reduction of number of right hand sides over iterations by using moments. Given,
however, the potentially reduced convergence threshold with a constrained subspace
size, we support switching from the multi-moment method, BEAST-M, to a single-
moment method, BEAST-C. The efficiency, robustness, and accuracy of this ap-
proach in comparison with traditional SSM and FEAST has been explored [35].

We further studied this scheme along with another performance-based imple-
mentation of SSM, z-PARES [68\(70]. These investigations considered the scaling
and computational cost of the libraries as well as heuristics for parameter choice,
in particular with respect to the number of quadrature nodes. We observed that the
scaling behavior improved when the number of quadrature nodes increased, as seen
in Figure [6] As the linear systems solved at each quadrature node are independent
and the quality of numerical integration improves with increased quadrature degree,
exploiting this property makes sense, particularly within the context of exascale
computations. However, it is a slightly surprising result, as previous experiments
with FEAST showed diminishing returns for convergence with increased quadra-
ture degree [24]], something we do not observe here.

Parameter level

In addition to the projector type, several algorithmic parameters determine the effi-
ciency of the overall method, most notably the dimension of the subspace and the
degree of the polynomial (BEAST-P) or the number of integration nodes (BEAST-C
and BEAST-M).

With certain assumptions on the overall distribution of the eigenvalues, clear rec-
ommendations for optimum subspace size (as a multiple of the number of expected
eigenvalues) and the degree can be given, in the sense that overall work is mini-
mized. For more details, together with a description of a performance-tuned kernel
for the evaluation of p(A) -Y, the reader is referred to [63].

If such information is not available, or for the contour integration-type projectors,
a heuristic has been developed that automatically adjusts the degree (or number of
integration nodes) during successive iterations in order to achieve a damping of
the unwanted components by a factor of 100 per iteration, which leads to close-to-
optimum overall effort; cf. [23].

Equipping Sparse Solvers For Exascale 13

—A— BEAST- N=64, Total
-¥-- BEAST- N=64, U
—@— z-Pares- N=64 Total
-4-- z-Pares- N=64, U
—*— BEAST- N=16, Total
- BEAST- N=16, U

103 4

Time(s)

102 4

Fig. 6: Strong scaling of BEAST and z-Pares for a IM x 1M standard eigenprob-
lem based on a graphene sheet of dimension 2000 x 500. Both solvers found 260
eigenpairs in the interval [—0.01,0.01] to a tolerance of 1 x 10~8. Both methods
used 4 moments and began with random initial block vector Y. For BEAST, Y con-
tained 100 columns; for z-Pares, 130. Testing performed on the Emmy HPC cluster
at RRZE. MUMPS was used for the direct solution of all linear systems. N refers
to the number of quadrature nodes along a circular contour, NP to the number of
processes.

Working precision level

Given the iterative nature of BEAST, with one iteration being comparatively ex-
pensive, the possibility to reduce the cost of at least some of these iterations is
attractive. We have observed that before a given residual tolerance is surpassed, sys-
tematic errors in the computation of the projector and other operations do not impair
convergence speed per se, but impose a limit on what residual can be reached before
progress stagnates. One such systematic error is the finite accuracy of floating-point
computations, which typically are available in single and double precision. In the
light of the aforementioned behavior, it seems natural to perform initial iterations
in single precision and thereby save on computation time before a switch to double
precision becomes inevitable; cf. Figure[7}

Therefore, mixed precision has been implemented in all BEAST schemes men-
tioned above, allowing an adaptive strategy to automatically switch from single to
double precision after a given residual tolerance is reached. A comprehensive de-
scription and results are presented in [2f]. These results and our initial investigations
also suggest that increased precision beyond double precision (i.e., quad precision)
will have no benefit for the convergence rate until a certain double precision specific
threshold is reached; convergence beyond this point would require all operations to
be carried out with increased precision.

14 Wellein et al.

10°

=]
10~ 5 S
=5 e 23
5 0 Fe EEEE
2 106 [~ Full double dquble 420s 305s
— full single mixed(7) 3335 265s
i mixed(11) mixed(9) 316s 257s
10 -0~ mixed(9) mixed(11) 301s 245s
O mixed(7) single 266s 2255

10-10 eps(single)

1 3 5 7 9 11 13 15
Iteration

Fig. 7: Left: average residual over the BEAST iterations for using double or single
precision throughout, and for switching from single to double precision in the 7th,
Oth, or 11th iteration, respectively. Right: time (in seconds) to convergence for a size
1048576 topological insulator (complex values) with a search space size of 256 and
a polynomial degree of 135 on 8 nodes of the Emmy-cluster at RRZE. Convergence
is reached after identical numbers of iterations (with the exception of pure single
precision, of course). The timings can vary for different ratios of polynomial de-
gree and search space size and depend on the single precision performance of the
underlying libraries.

3.2.3 Levels of parallelism

The BEAST framework exploits multiple levels of parallelism using an MPI+X par-
adigm. We rely on the GHOST and PHIST libraries for efficient sparse matrix/dense
vector storage and computation; cf. Sect.[5] The operations implemented therein are
themselves hybrid parallel and constitute the lowest level of parallelism in BEAST.
Additional levels are addressed by parallelizing over blocks of vectors in Y and,
for BEAST-C and BEAST-M, over integration nodes during the application of the
approximate projector. A final level is added by exploiting the ability of the method
to subdivide the search interval [A, 4] and to process the subintervals independently
and in parallel. Making use of these properties, however, may lead to non-orthogonal
eigenvectors, which necessitates postprocessing as explained in the following.

3.2.4 A posteriori cross-interval orthogonalization

Rayleigh-Ritz-based subspace iteration algorithms naturally produce a B-orthogonal
set of eigenvectors X, i.e., orth(X) is small, where

. . X
orth(X) = max {orth(x;,x;)[i # j} ~with orth(x,y) = ”i}['”;)”

Equipping Sparse Solvers For Exascale 15
By contrast, the orthogonality
orth(X,Y) = max {orth(x;,y;) }

between two or more independently computed sets of eigenvectors may suffer if
the distance between the involved eigenvalues is small [5051]]. Simultaneous re-
orthogonalization of evolving approximate eigenvectors during subspace iteration
has proven ineffective unless the vectors have advanced reasonably far. A large scale
re-orthogonalization of finished eigenvector blocks, on the other hand, requires a
careful choice of methodology in order to not diminish the quality of the previously
established residual.

Orthogonalization of multiple vector blocks implies Gram-Schmidt style propa-
gation of orthogonality, assuming orth(X,Y) can be arbitrarily poor. In practice, the
independently computed eigenvectors will exhibit multiple grades of orthogonality,
but rarely will there be no orthogonality (in the sense above) at all. This, in turn,
allows for the use of less strict orthogonalization methods. While, in theory, the or-
thogonalization of p blocks requires at least p(p —1)/24 (p — 1) block-block or
intra-block orthogonalizations and ensures global orthogonality, an iterative scheme
allows for more educated choices on the ordering of orthogonalizations in order
to reduce losses in residual and improve the communication pattern, eliminating
the need for broadcasts of vector blocks at the cost of additional orthogonalization
operations in the form of multiple sweeps. In practice, very few sweeps (~ 2) are
sufficient in most cases.

Every block-block orthogonalization X = X — Y (Y BX) disturbs the orthogonal-
ity orth(X) of the modified block, as well as its residual. Local re-orthogonalization
of X disturbs the residual further. We have identified orthogonalization patterns and
selected orthogonalization algorithms that reduce the loss of residual accuracy to a
degree that essentially eliminates the need for additional post-iteration.

The implementation of an all-to-all interaction of many participating vector
blocks can be performed in multiple ways with different requirements regarding
storage, communication, runtime, and with different implications on accuracy and
loss of residual. Among several such strategies and algorithms that have been im-
plemented and tested, the most promising is a purely iterative scheme, both for
global and local orthogonalization operations. It is based on a comparison of inter-
val properties, most notably the achieved residual from the subspace iteration. We
are continuing to explore the possibility to detect certain orthogonalizations as un-
necessary without computing the associated inner products in order to further reduce
the workload without sacrificing orthogonality.

3.2.5 Robustness and resilience

In the advent of large scale HPC clusters, hardware faults, both detectable an unde-
tectable, have to be expected.

16 Wellein et al.

Detectable hardware faults, e.g., the outage of a component that violently halts
execution, can typically only be mitigated by frequent on-the-fly storage of the most
vital information. In the case of subspace iteration, as is used in BEAST, almost
all required information for being able to resume computation is encoded in the
iterated subspace basis in form of the approximate eigenvectors, besides runtime
information about the general program flow. Relying on the CRAFT library [76], a
per-iteration checkpointing mechanism has been implemented in BEAST.

Additionally, for also being able to react to “silent” computation errors that
merely distort the results but do not halt execution, the most expensive operation
(application of the approximate projector) has been augmented to monitor the san-
ity of the results. This can be done in two ways: A checksum-style entrainment
of additional vectors, linear combinations of the right-hand sides, can be checked
during and after the application of the projector to detect errors and allow for the
re-computation of the incorrect parts. The comparison of approximate filter values
obtained form the computed basis and the expected values obtained from the scalar
representation of the filter function, on the other hand, gives an additional a posteri-
ori test for the overall plausibility of the basis.

Practical tests have shown that small distortions of the subspace basis have not
enough impact on the overall process in order to justify expensive measures. If the
error is not recurring, just continuing the subspace iteration is often the best and
most cost-efficient option. This is particularly true in early iterations, where small
errors have no effect at all.

3.3 Further progress on contour integral-based eigensolvers

3.3.1 Relationship among contour integral-based eigensolvers

The complex moment-based eigensolvers such as the Sakurai-Sugiura method can
be regarded as projection methods using a subspace constructed by the contour in-
tegral

1
— [dz X (zB—A)"'BY.
e

The property of the subspace is well analyzed by using a filter function

d .
fa)= Y,

j=1%j~

which approximates a band-pass filter for the target region where the wanted eigen-
values are located. Using the filter function, error analyses of the complex moment-
based eigensolvers were shown in [30,39,/40167.(79]]. By using the results of the error
analyses, an error resilience technique and an accuracy deterioration technique have
also been given in [[32,/41]].

Equipping Sparse Solvers For Exascale 17

The relationship between typical complex moment-based eigensolvers was also
analyzed in focusing on the subspace. The block SS-RR method and
the FEAST algorithm are projection methods for solving the target general-
ized eigenvalue problem, whereas the block SS-Hankel method , Beyn , the
block SS-Arnoldi methods [38] and its improvements [42] are projection methods
for solving an implicitly constructed standard eigenvalue problem; see for de-
tails. Figure [8] shows a map of the relationships among the contour integral-based
eigensolvers.

The target GEP [SEP with the same eigenpairs
Ax; = \;Bx;, A\ € Q Cx; = Nixi, N\ € Q,x; € R(XT)

[]
I I I Rayleigh-Ritz I

. .. Subspace
Rayleigh-Ritz itera’t)ion

Petrov-Galerkin block Arnoldi
[T .
,, [TRRNRNNN E——
with high order
. PN __ _moments
TN S =[S0, 51, .. 1] WG .

block block block |
SS-Hankel SS-Beyn SS-Arnoldi

Fig. 8: A map of the relationships among the contour integral-based eigensolvers.

3.3.2 Extension to nonlinear eigenvalue problems

The complex moment-based eigensolvers were extend to nonlinear eigenvalue prob-
lems (NEPs):
T(A)xi=0, x;€C"\{0}, L eQcCC,

where the matrix-valued function 7 : Q — C"*" is holomorphic in an open domain
Q. The projection for a nonlinear matrix function 7(4) is given by

1
— [dz 1) Y.
27ti/r 27T (2)

This projection is approximated by

N
Ue=Y 02T (zj)7'Y, k=0,1,...m—1.
j=1

18 Wellein et al.

The block SS-Hankel [[7,[8]], block SS-RR [86]], and block SS-CAA methods [43]]
are simple extensions of the GEP solvers. A technique for improving the numerical
stability of the block SS-RR method for NEP was developed in [[141|15].

Beyn proposed a method using Keldysh’s theorem and the singular value de-
composition [12]]. Van Barel and Kravanja proposed an improvement of the Beyn
method using the canonical polyadic (CP) decomposition [10].

3.4 Recursive Algebraic Coloring Engine (RACE)

The standard approach to solve the ill-conditioned linear systems arising in BEAST-
C or FEAST is to use direct solvers. However, in [26] it was shown that the Kacz-
marz iterative solver accelerated by a Conjugate Gradient (CG) method (the so-
called CGMN solver [29]]) is a robust alternative to direct solvers. Standard multi-
coloring (MC) was used in [29] for the parallelization of the CGMN kernels. After
analyzing the shortcomings of this strategy in view of hardware efficiency, we devel-
oped in collaboration with the EXASTEEL-II project the Recursive Algebraic Col-
oring Engine (RACE) [1]. It is an alternative to the well-known MC and algebraic
block multicoloring (ABMC) algorithms [44], which have the problem that their
matrix reordering can adversely affect data access locality. RACE aims at improving
data locality, reducing synchronization, and generating sufficient parallelism while
still retaining simple matrix storage formats such as compressed row storage (CRS).
We further identified distance-2 coloring of the underlying graph as an opportunity
for parallelization of the symmetric spMVM (SymmSpMYV) kernel.

RACE is a sequential, recursive, level-based algorithm that is applicable to
general distance-k dependencies. It is currently limited to matrices with symmet-
ric structure (undirected graph), but possibly nonsymmetric entries. The algorithm
comprises four steps: level construction, permutation, distance-k coloring, and load
balancing. If these steps do not generate sufficient parallelism, recursion on sub-
graphs can be applied. Using RACE implies a pre-processing and a processing
phase. In pre-processing, the user supplies the matrix, the kernel requirements (e.g.,
distance-1 or distance-2) and hardware settings (number of threads, affinity strat-
egy). The library generates a permutation and stores the recursive coloring informa-
tion in a level tree. It also creates a pool of pinned threads to be used later. In the
processing phase, the user provides a sequential kernel function which the library
executes in parallel as a callback using the thread pool.

Figure [9] shows the performance of SymmSpMV on a 24-core Intel Xeon Sky-
lake CPU for a range of sparse symmetric matrices. In Figure[9a]we compare RACE
against Intel’s implementation in the MKL library, and with roofline limits obtained
via bandwidth measurements using array copy and read-only kernels, respectively.
RACE outperforms MKL by far. In Figure |[9b| we compare against standard multi-
coloring (MC) and algebraic block multicoloring (ABMC). The advantage of RACE
is especially pronounced with large matrices, where data traffic and locality of ac-
cess is pivotal. One has to be aware that some algorithms may exhibit a change in

Equipping Sparse Solvers For Exascale 19

35 [®RACEAMKLRLM-copy 4 RLM-load]
=30
~
g
7 25
<)
o 20
<
215
3
10
[a)
5
0
(a) Performance of RACE compared with MKL
35 @RACEAABMCRIMC
= 30 -
= o o %O °
Epl du ot ® e
5 \ A |) oo
220
= ¢ A e
£15 o A » o A—A
£ | | / /
£ 10 u e 8 /_m m
& m u - u /
5 A 4w
%= = = > & ™ ©® = ® S & © © 5 S T
§ 5§ & §F 5 5 §F ¥ F 5 s L EFEE FsoxF ¢
S E F 508 8 s 8§y 8 o3 g 9 5 F 98
=5 ° £ C g ¢ §F & é: s S F <
£ s S § < g
el &

(b) Performance of RACE compared to other coloring approaches

Fig. 90 SymmSpMV performance of RACE compared to other methods. The
roofline model for SymmSpMYV is shown in Figure [9a] for reference. Representa-
tive matrices from and ScaMaC [53.5] were used. Note that the matrices are
ordered according to increasing number of rows. (One Skylake Platinum 8160 CPU

[24 threads])

convergence behavior due to the reordering. This has to be taken into account when
benchmarking whole program performance instead of kernels. Details can be found
in [1]].

In order to show the advantages of RACE in the context of a relevant algorithm,

we chose FEAST for computing inner eigenvalues. The hot spot of the algo-
rithm (more than 95%) is a solver for shifted linear systems (A — o/ = b). These

20 Wellein et al.

T T T T 103 — . .
- Intfe{l ;\é}éLéléﬁll\iIso) | —— Intel MKL(Pardiso)
- / L RACE-CGMN
—t— ABMC—(ZGMN tH —— ABMC-CGMN
- O(n?)
10°¢ O(n) 3 0% E
F . 1 o i
= 10° 1 2
] r e 1 >
= r ’] 3
1L -
T / 1 g0
i | =
103 E E
A/A
s R 0| v B
102 | . 10 F o
| | | | | L | | | 1]
60° 80% 1203 180% 250° 60 80° 120° 180% 2503
Size (n) Size (n)
(a) Time to solution (b) Memory requirement

Fig. 10: Comparison of FEAST with default MKL direct solver and iterative solver
CGMN, parallelized using RACE. (One Skylake Platinum 8160 CPU [24 threads])

systems are, however, highly ill-conditioned, posing severe convergence problems
for most linear iterative solvers. We use the FEAST implementation of Intel MKL,
which by default employs the PARDISO direct solver [71], but its Reverse Commu-
nication Interface (RCI) allows us to plug our CGMN implementation instead. In the
following experiment we find ten inner eigenvalues of a simple discrete Laplacian
matrix to an accuracy of 103, Figure shows the measured time and memory
footprint of the default MKL version (using PARDISO) and the CGMN versions
parallelized using both RACE and ABMC for different matrix sizes. ABMC is a
factor of 4x slower than RACE. The time required by the default MKL with PAR-
DISO is smaller than with CGMN using RACE for small sizes; however, the gap
gets smaller as the size grows due to the direct solvers having a higher time com-
plexity (here ~ ¢'(n?)) compared to iterative methods (=~ &'(n'-3%)). Moreover, the
direct solver requires more memory, and the memory requirement grows much faster
(see Figure [T0D) than with CGMN. In our experiment the direct solver ran out of
memory at problem sizes beyond 1403, while CGMN using RACE used less than
10% of space at this point. Thus, CGMN with RACE can solve much larger prob-
lems compared to direct solvers, which is a major advantage in fields like quantum
physics.

Equipping Sparse Solvers For Exascale

204

15 A

<10 4

M=N

Fig. 11: Percentage of roofline pre-
dicted performance achieved by
cuBLAS for the range M = N € [1,64]
on a Tesla V100 with 16GB of
memory. (From [20])

7000 1 ==~ memory bandwidth limit
----- FP execution limit 4
6000 1 —— no leap frog —t
leap frog s

5000 { —=— CUBLAS -

—— CUTLASS L. ‘
K K

3000 4

GFlop/s

2000 1

1000 4

Fig. 12: Best achieved performance
for each matrix size with M = N
in comparison with the roofline limit,
cuBLAS and CUTLASS, with K =223,
(From [20])

4 Hardware Efficiency and Scalability

In this section we showcase performance and parallel efficiency numbers for library
components developed in ESSEX-II that are of paramount importance for the ap-
plication work packages: GPGPU-based tall & skinny matrix-matrix multiplication
and the computation of inner eigenvalues using polynomial filter techniques.

4.1 Tall & skinny matrix-matrix multiplication (TSMM) on GPGPUs

Orthogonalization algorithms frequently require the multiplication of matrices that
are strongly nonsquare. Vendor-supplied optimized BLAS libraries often yield sub-
optimal performance in this case. “Sub-optimal” is a well-defined term here since
the multiplication of an M x K matrix A with an K x N matrix B with K > M, N and
small M, N is a memory-bound operation: At M = N, its computational intensity is
just M/8flop/byte. In ESSEX-I, efficient implementations of TSMM on multicore
CPUs were developed [52]].

The naive roofline model predicts memory-bound execution for M < 64 on a
modern Volta-class GPGPU. See Figure [IT]for a comparison of optimal (roofline)
performance and measured performance for TSMM on an Nvidia Tesla V100
GPGPU using the cuBLAS libraryﬂ We have developed an implementation of
TSMM for GPGPUs [20]], investigating various optimization techniques such as
different thread mappings, overlapping long-latency loads with computation via

Shttps://docs.nvidia.com/cuda/cublas (May 2019)

https://docs.nvidia.com/cuda/cublas

22 Wellein et al.

leapfroggini] and unrolling, options for global reductions, and register tiling. Due
to the large and multi-dimensional parameter space, the kernel code is generated
using a python script.

Figure [12] shows a comparison between our best implementations obtained
via parameter search (labeled “leap frog” and “no leap frog,” respectively) with
cuBLAS and CUTLASﬂ which is a collection of CUDA C++ template abstractions
for high-performance matrix multiplications. Up to M = N = 36, our implementa-
tion stays within 95% of the bandwidth limit. Although the performance levels off at
larger M, N, which is due to insufficient memory parallelism, it is still significantly
better than with cuBLAS or CUTLASS.

4.2 BEAST performance and scalability on modern hardware

4.2.1 Node-level performance

Single-device benchmark tests for BEAST-P were performed on an Intel Knights
Landing (KNL), an Nvidia Tesla P100, and an Nvidia Tesla V100 accelerator, com-
paring implementations based on vendor libraries (MKL and cuBLAS/cuSPARSE,
respectively) with two versions based on GHOST: one with and one without tailored
fused kernels. The GPGPUs showed performance levels expected from a bandwidth-
limited code, while on KNL the bottleneck was located in the core (see Figure @)
Overall, the concept of fused optimized kernels provided speedups of up to 2x com-
pared to baseline versions. Details can be found in [53]].

4.2.2 Massively parallel performance

Scaling tests for BEAST-P were performed on the “Oakforest-PACS” (OFP) at the
University of Tokyo, “Piz Daint” at CSCS in Lugano, and on the “SuperMUC-
NG” (SNG) at Leibniz Supercomputing Centre (LRZ) in Garchingﬂ While the OFP
nodes comprise Intel “Knights Landing” (KNL) many-core CPUs, SNG has CPU-
only dual-socket nodes with Intel Skylake-SP, and Piz Daint is equipped with single-
socket Xeon “Haswell” nodes, each of which has an Nvidia Tesla P100 accelerator
attached. Weak and strong scaling tests were done with topological insulator (TT)
matrices generated by the ScaMaC library. Flops were calculated for the computa-
tion of the approximate eigenspace, U, averaged over the four BEAST iterations it
took to find the 148 eigenvalues in each interval to a tolerance of 1 x 10710, The

7 Leapfrogging in this context means that memory loads to operands are initiated one loop itera-
tion before the data is actually needed, allowing for improved overlap between data transfers and
computations.

8 https://github.com/NVIDIA/cutlass (May 2019)

° Runs on OFP and SNG were made possible during the “Large-scale HPC Challenge” Project on
OFP and the “Friendly-User Phase” of SNG.

https://github.com/NVIDIA/cutlass

Equipping Sparse Solvers For Exascale 23

500

100~
0

500

O MKL [0 cuBLAS/cuSPARSE
O GHOST-nofuse 1 [|0 GHOST-nofuse 1
B GHOST B GHOST q 400

w B
=3 =3
=] S
T T
" 1 " 1
T
]
1 1
)
=3
=

Performance [GFLOP/s]
8
=
T

Performance [GFLOP/s]

2x HSW.

4 8 16 32 64 128 8 16 32 64
Search space dimension n_ Search space dimension n_
(a) KNL (b) P100
ZEZIWE] - l - Fig. 13: BEAST-P performance for
— 700 CHOST / : : 1 a topological insulator problem of
EGOO; f : 1 dimensions 128 x64x64 with n, =
& sool ‘ ‘] 500 using different implementations
& 400 f U |] on KNL, P100, and V100. Perfor-
S 3oof | | M B . mance of a dual Xeon ES5-2697v3
& 200 eI N : node (Haswell) is shown for refer-
1000 M U T ence. Note the different y axis scaling
oL of the V100 results. (From [53]]; for
Search space dimension

details see therein)
(c) V100

subspace contained 256 columns, and spMMVs were performed in blocks of size
32 for best performance. Optimized coefficients [25] were used for the Chebyshev
polynomial approximation, resulting in a lower overall required polynomial degree.
Weak and strong scaling results are shown in Figures [[4a] through[T4d]

OFP and SNG show similar weak scaling efficiency due to comparable single-
node performance and network characteristics. Piz Daint, owing to its superior
single-node performance of beyond 400 Gflop/s, achieves only 60% of parallel
efficiency at 2048 nodes. A peculiar observation was made on the CPU-only
SNG system: Although the code runs fastest with pure OpenMP on a single node
(223 Gflop/s), scaled performance was observed to be better with one MPI process
per socket. The ideal scaling and efficiency numbers in Figures[T4aHI4c|use the best
value on the smallest number of nodes in the set as a reference. The largest matrix
on SNG had 6.6 x 10° rows.

5 Scalable and Sustainable Software

It was a central goal of the ESSEX-II project to consolidate our software efforts and
provide a library of solvers for sparse eigenvalue problems on extreme-scale HPC
systems. This section gives an overview of the status of our software, most of which

24

]02 1 1 1 1 1
2 8 32 128 512 2048
Number of nodes
(a) Weak scaling of BEAST-P on OFP for prob-
lems of size 220 (2 nodes) to 230 (2048 nodes,

about one quarter of the full machine).

ET T T T T T T

1 2 1 1 1 1 1
012 3 32 128 512 2048

Number of nodes
(c) Weak scaling of BEAST-P on SNG for
problems of size 22! (1 node) to 1.53 x 232

Wellein et al.

GFLOPS

2 1 1 1 1 1
10712 3 32 128 512 2048
Number of nodes
(b) Weak scaling of BEAST-P on Piz Daint
for problems of size 221 (1 node) to 232 (2048
nodes). (From [53]))

T T T T T

GFLOPS
)
T

104 L L L L
128 256 512 1024
Number of nodes

(d) Strong scaling of BEAST-P on SNG for
problems of size 228 (crosses) and 230 (trian-

L
2048

(3136 nodes, about half of the full machine). gles).

Fig. 14: Weak scaling of BEAST-P on OFP, Piz Daint, and SNG, and strong scaling
on SNG. Dashed lines denote ideal scaling with respect to the smallest number of
nodes in the set.

is now publicly available under a three-clause BSD license. Many of the efforts
have been integrated in the PHIST library so that they can easily be used together,
and we made part of the software available in larger contexts like Spack [27] and
the extreme-scale scientific software development kit xXSDK [11]]. The xSDK is an
effort to define common standards for high-performance, scientific software in terms
of software engineering and interoperability.

The current status of the software developed in the ESSEX-II project is summa-
rized as follows.

e BEAST is available via bitbucke@ and can be compiled either using the PHIST
kernel interface or the GHOST library directly. The former allows using it with
any backend supported by PHIST.

0https://bitbucket.org/essex/beast/

https://bitbucket.org/essex/beast/

Equipping Sparse Solvers For Exascale 25

e CRAFT is available stand-along' ' or (in a fixed version) as part of PHIST.

e ScaMaC is available stand—alon or (in a fixed version) as part of PHIST.

e GHOST is available via bitbucke{'’| The functionality which is required to pro-
vide the PHIST interface can be tested via PHIST. Achieving full (or even sub-
stantial) test coverage of the GHOST-functionality would require a very large
number of tests (in addition to what the PHIST interface provides, GHOST al-
lows mixing data types, and it uses automatic code generation, which leads to
an exponentially growing number of possible code paths with every new ker-
nel, supported processor and data type). It is, however, possible to create a basic
GHOST installation via the Spack package manager (since March 2018, commit
bcde376).

e PHIST is available via bitbucke and Spack (since commit 2e4378b). Further-
more, PHIST 1.7.5 is part of xSDK 0.4.0. The version distributed with the xSDK
is restricted to use the Tpetra kernels to maximize the interoperability of the
package.

5.1 PHIST and the Block-ILU

In ESSEX-I we addressed mostly node-level performance [80] on multi-core CPUs.
The main publication of ESSEX-II concerning the PHIST library [81]] presents per-
formance results for the block Jacobi-Davidson QR (BJDQR) solver on various plat-
forms, including recent CPUs, many-core processors and GPUs. It was also shown
in this work that the block variant has a clear performance advantage over the single-
vector algorithm in the strong scaling limit. The reason is that, while the number of
matrix-vector multiplications increases with the block size (see also [|66]]), the total
number of reductions decreases. In order to demonstrate the performance porta-
bility of PHIST, we show in figure [I5] a weak scaling experiment on the recent
SuperMUC-NG machine.

For the block size 4, we roughly match the performance it achieves in the
memory-bounded HPCCG benchmark (207 TFlop/s)PE] but using only half of the
machine. This gives a clear indication that our node-level performance engineering
and multi-node implementation are highly successful: after all, we do not optimize
for the specific operator application (a simple structured grid, 3D Laplace operator),
which the HPCCG code does. On the other hand, we have an increased compu-
tational intensity for some of the operations due to the blocking, which increases
the performance over a single-vector CG solver. The single-vector BJDQR solver
achieves 98 TFlop/s on half of the machine.

Whttps://bitbucket.org/essex/craft/

2 https://bitbucket.org/essex/matrizxcollection/
Bhttps://bitbucket. org/essex/ghost/

4 'https://bitbucket.org/essex/phist

15 see https://www.top500.org/system/179566

https://bitbucket.org/essex/craft/
https://bitbucket.org/essex/matrixcollection/
https://bitbucket.org/essex/ghost/
https://bitbucket.org/essex/phist
https://www.top500.org/system/179566

26 Wellein et al.

100 ;
——n,=1
206
—onpy =12 Tflop/s ..
105 1 n,=4 ’
43.1 p
Tflop/s &
2 i
2 10 53 &
o Tflop/s &
8
g
g
< 10° F 0.643 &
2 Tflop/s &
L 0.0784
102 Tflop/s
10 Il Il

Il Il Il
48 384 3072 24576 152064
#cores

Fig. 15: Weak scaling behavior of the PHIST BJIDQR solver for a symmetric PDE
benchmark problem and different block sizes.

5.1.1 Integration of the Block-ILU preconditioning technique

Initial steps have been taken to make the Block-ILU preconditioner (cf. Section[3.1])
available via the PHIST preconditioning interface. At the time of writing, there is
an experimental implementation of a block CRS sparse matrix format in the PHIST
builtin kernel library, including parallel conversion and matrix-vector product rou-
tines and the possibility to construct and apply the block Cholesky preconditioner.
Furthermore, the interfaces necessary to allow using the preconditioner within the
BJDQR eigensolver have been implemented. These features are available for exper-
imenting in a branch of the PHIST git repository because they do not yet meet the
high demands on maintainability (especially unit testing) and documentation of a
publicly available library. Integration of the method with the BEAST eigensolver is
not yet possible because the builtin kernel library does not support complex arith-
metic. As mentioned in Section [3.2] the complex version will be integrated directly
into the BEAST software, instead.

Equipping Sparse Solvers For Exascale 27

5.2 BEAST

BEAST combines implementations of spectral filtering methods for Rayleigh-Ritz
type subspace iteration in a generalized framework to provide facilities for improv-
ing performance and robustness. The algorithmic foundation allows for the solution
of interior Hermitian definite eigenproblems of standard and generalized form via
an iterative eigensolver, unveiling all eigenpairs in one or many specified intervals.
The software is designed as hybrid parallel library, written in C/C++, and relying
on GHOST and PHIST to provide basic operations, parallelism, and data types. Be-
yond the excellent scalability of the underlying kernel libraries, multiple additional
levels of parallelism allow for computing larger portions of the spectrum and/or uti-
lizing a larger number of computing cores. The inherent ability of the underlying
algorithm to compute separate intervals independently offers wide potential but re-
quires careful handling of cross-interval interactions to ensure the desired quality of
results, which is well supported by BEAST.

The BEAST library interface comes in variations for the common floating point
formats (real and complex, single and double precision) for standard and general-
ized eigenproblems. Additionally, the software offers the possibility to switch pre-
cisions on-the-fly, from single to double precision, in order to further improve per-
formance. While BEAST offers an algorithm for standard eigenproblems that com-
pletely bypasses the need for linear system solves, other setups typically require a
suitable linear solver. Besides a builtin parallel sparse direct solver for banded sys-
tems, BEAST includes interfaces to MUMPS and Strumpack, as well as a flexible
callback-driven interface for the inclusion of arbitrary linear solvers. It also inter-
faces with CRAFT and ScaMaC, which provide fault tolerance and dynamic matrix
generation, respectively. While working out of the box for many problems, BEAST
offers a vast amount of options to tweak the software for the specific problem at
hand. A builtin command line parser allows for easy modification. The included ap-
plication bundles the several capabilities of BEAST in form of a stand-alone tool
that reads or generates matrices and solves the specified eigenproblem. As such, it
acts as comprehensive example for the usage of BEAST.

The library is still in a development state, and interface and option sets may

change. A more comprehensive overview over a selection of features is provided in
Section[3.21

5.3 CRAFT

The CRAFT library [[75]] covers two essential aspects of fault tolerance namely com-
munication, and data recovery of an MPI application in case of process-failures.

In the Checkpoint/Restart part of the library, it provides an easier and extensible
interface for making application-level checkpoint/restart. A CRAFT-checkpoints
can be defined simply by defining a Checkpoint object and adding the restart-
relevant data in it, as shown in Listing [I| By default, the Checkpoint::add()

28 Wellein et al.

#include <mpi.h>
#include <craft.h>
int main(int argc, charx argv[]){

size_t n=5, myrank, iteration=1, cpFreq=10;
double dbl = 0.0;

int x dataArr = new int[n];

MPI_Comm FT_Comm;

MPI_.Comm_.dup (MPLCOMM._WORLD, &FT_-Comm) ;
AFT_BEGIN (FT_Comm, &myrank, argv);

Checkpoint myCP (”myCP”, FT_Comm) ; //define checkpoint
myCP.add (”dbl”, &dbl);
myCP.add (”iteration”, &iteration);
myCP.add (”dataArr”, dataArr, &n);
myCP. commit () ;
myCP. restartIfNeeded (&iteration);
for (; iteration <= 100 ; iteration++){
Computation_.communication () ;
modifyData(&dbl, dataArr);
myCP.updateAndWrite (iteration , cpFreq);

AFTEND() ;
}
Listing 1: A toy-code that demonstrates the
simplicity of CRAFT’s checkpoint/restart and automatic fault tolerace features in
a typical iterative-style scientific application.

function supports the most frequently used data formats, e.g., “plain old data”
(POD), i.e., int, double, float, etc., POD 1D- and 2D-arrays, MPI data-types,
etc.. However, it can be easily extended to support any user defined data-types. The
Checkpoint::read(), write() and update () methods can then be used to read-
/write all added checkpoint’s data. The library supports asynchronous-checkpointing
as well as node-level checkpointing using the SCR library [45]]. Moreover it supports
multi-staged, nested-, and signal-checkpointing.

The Automatic Fault Tolerance (AFT) part of CRAFT provides an easier in-
terface for a dynamic process-failure recovery and management. CRAFT uses the
ULFM-MPI implementation for process-failure detection, propagation, and com-
munication recovery procedures, however it considerably reduces the user’s effort
by hiding these details behind AFT_BEGIN() and AFT_END() functions as shown
in Listing [T} After a process failure, the library recovers the broken communica-
tor (shrinking or non-shrinking by process-spawning), and returns the control back
to the program at AFT_BEGIN (), where the data can be recovered. Both of these
CRAFT functionalities are designed to complement each other, however they can
be used independently as well. For detailed explanation of the features included in
CRAFT, check [75]]. Moreover, the library is available at [[74].

Equipping Sparse Solvers For Exascale

Lanczos parameters

Graphene-3000-
Matrix 3000 num. rows & cols. 9.0-108
number of non-zeros 11.7-10° global checkpoint size ~ 14.4GB
num. of iterations 3000 Checkpoint frequency 500
Jacobi-Davidson parameters (using Phist)
Matrix spinSZ30 num. of rows & columns 1.6-10%
num. of sought
Number of non-zeros 2.6-10° eigenvalues 20
num. of sought
eigenvalues 20 num. of checkpoints 10
global checkpoint size ~32GB Backend support library Ghost
Beast parameters
tgraphene:
Matrix 12000,12000,0 |num. rows & cols. 1.44-108
Beast iterations 9 checkpoint frequency 2
global checkpoint size ~ 65GB Backend support library Ghost

29

Table 1: The parameter values for Lanczos, JD, and Beast benchmarks.

5.4 CRAFT Benchmark Application

Within the scope of ESSEX, we have integrated CRAFT in the GHOST and PHIST
libraries, and the BEAST algorithm.

Figure [T6] shows a benchmark comparing the overhead of three different check-
pointing strategies for the Lanczos algorithm (GHOST-based eigensolver) , Jacobi-
Davidson (PHIST-based eigensolver), and the BEAST algorithm. The important
parameters for these benchmarks are listed in Table [T} The benchmark shows that
the node-level and asynchronous checkpointing significantly reduces the checkpoint
overhead despite a very high checkpoint frequency.

The benchmark presented in Fig.[17|demonstrates the overhead caused by check-
point/restart as well as by the communication recovery after process failures for the
Lanczos application. The first two bars, namely ‘No CP Intel MPI’ and ‘No CP
ULFM-MPI’ show the runtime between non-fault-tolerant (Intel-MPI) vs. a fault-
tolerant MPI implementation (ULFM-MPI), and creates a baseline for ULFM-MPI
implementation without any failures. The next two group of bars show the applica-
tion runtime with 0-,1-, and 2-failures with checkpoints taken on PFS- and node-
level. The failures are triggered at the mid-point of two successive checkpoints from
within the application to have a deterministic re-computation time, where each fail-
ure simulates a complete node-crash (2 simultaneous process failures) and recovery
is performed in a non-shrinking fashion on spare nodes. The largest contribution
to the overhead is caused by the re-computation part, whereas the communication
repair overhead takes an average of ~ 2.6 sec. only.

30 Wellein et al.

—@—Lanczos, Ghost ~ —@-Beast, Ghost ~—@-Jacobi Davidson, Phist

900
18.4%

850 11.9%
0.2%
800 = o

0.52% 1.33%

31.2% 350

15.6%
7.3% 300

250

Runtime (Sec.)

200

NO-CP SCR ASYNC-PFS PFS

Fig. 16: CRAFT checkpointing overhead comparison for the Lanczos, Jacobi-
Davidson, and BEAST eigenvalue solvers using three checkpointing methods of
CRAFT, namely, node-level checkpointing with SCR, asynchronous PFS, and syn-
chronous PFS checkpoints. The overhead for each checkpoint case is shown as a
percentage. (number of nodes=128, number of processes=256, Intel MPI).

Besides ESSEX, CRAFT has been utilized in [22] to create a process-level fault
tolerant FEM code based on the shrinking recovery style. Moreover, CRAFT has
been recently integrated in the EXASTEEL [21]] project.

5.5 ScaMaC

Sparse matrices are central objects in the ESSEX project because of its focus on
large-scale numerical linear algebra problems. A sparse matrix, whether derived
from the Hamiltonian of a quantum mechanical system, from the Laplacian in a
partial differential equation, or simply given as an abstract entity with unknown
properties, defines a problem to be solved. The solution may then consist of a set
of eigenvalues and eigenvectors computed with the BEAST or Jacobi-Davidson al-
gorithms or, more moderately, of an estimate of some matrix norm or the spectral
radius.

Testing and benchmarking of linear algebra algorithms, but also of computa-
tional kernels such as spMVM, requires matrices of different type and different size.
Standard collections such as the Matrix Market [59] or Florida Sparse Matrix Col-
lection [17]] cover a wide range of examples, but mainly provide matrices of fixed
moderate size. As algorithms and implementations improve, such matrices become
readily too small and limited to serve as realistic test and benchmark cases.

Equipping Sparse Solvers For Exascale 31

& redo-comp.
2 CP-read
77 reinit i
I comm. repair
M checkpoint 1000
[computation
~ 800 800
5}
Q L
N
Y 600 600
© L
£
= 400 400
200 — 200
0 No CP No CP No 1 2 No 1 2 0
Intel MPI ULFM-MPI failure fail. fail. failure fail. fail.
Sync. CP @ PFS Sync. CP @ node-level
(using SCR)

Fig. 17: Lanczos application with various checkpoint/restart and process failure re-
covery scenarios using 128 nodes (256 processes) on the RRZE Emmy cluster. On
average the communication recovery time is 2.6 seconds (ULFM-MPI v1.1).

We therefore decided in the ESSEX project to establish a collection of scalable
matrices — the ScaMaC. Every matrix in ScaMaC is parameterized by individual
parameters that allow the user to scale up the matrix dimension and to modify other,
for example spectral, properties of the matrix. ScaMaC includes simple test and
benchmark matrices but also ‘real-world’ matrices from research studies and appli-
cations. A major goal of ScaMaC is to provide a flexible yet generic interface for
matrix generation, together with the necessary infrastructure to allow for immediate
access to the collection irrespective of the concrete usage case.

The ScaMaC approach to matrix generation is straightforward and simple: Ma-
trices are generated row-by-row (or column-by-column). The entire complexity of
the actual generation technique, which depends on the specific matrix example, is
encapsulated in a ScamacGenerator type and hidden from the user. ScaMaC pro-
vides routines to create and destroy such a matrix generator, to query matrix param-
eters prior to the actual matrix generation, and to obtain each row of the matrix. The
ScaMaC interface is entirely generic and identical for all matrices in the collection.

A minimal code example is given in Figure [I8] In this example, the matrix and
its parameters are set by parsing an argument string of the form "MatrixName,
parameter=...,..." in line 3, before all rows are generated in the loop in lines
12—17. As this examples shows, parallelization of matrix generation is not part of the
ScaMaC, but lies within the responsibility of the calling program. All ScaMaC rou-
tines are thread-safe and can be embedded directly into MPI processes and OpenMP

32 Wellein et al.

// step 1: obtain a generator - per process

ScamacGenerator * my_gen;

err = scamac_parse_argstr(, &my_gen, &errstr);
err = scamac_generator_finalize(my gen);

// step 2: allocate workspace - per thread

ScamacWorkspace * my ws;

err = scamac_workspace_alloc(my gen, &my ws);

00 1 D T W N

©

// step 3: generate the matrix row by row
ScamacIdx nrow = scamac_generator_query_nrow(my gen);
for (idx=0; idx<nrow; idx++) { // parallelize loop with OpenMP, MPI, ...
// obtain the column indices and values of one row
err = scamac_generate_row(my _gen, my ws, idx, SCAMAC DEFAULT, &nz, cind, val);
15 // store or process the row
16 e

e
B W N = O

17}
18 // step 4: clean up
19 err = scamac_workspace_free(my ws); // in each thread

20 err = scamac_generator_destroy(my gen); // in each process
21 // step 5: use matrix
22 e

Fig. 18: Code example for row-by-row matrix generation with the generic ScaMaC
generators.

threads. This approach guarantees full flexibility for the user and is easily integrated
into existing parallel matrix frameworks such as PETSc or Trilinos. Both BEAST
and PHIST provide direct access to the ScaMaC, therefore freeing the user from any
additional considerations when using ESSEX software.

ScaMaC is written in plain C. Auto-generated code is included already in the
release, such that requirements at compile time are minimal. Interoperability with
other programming languages is straightforward, e.g., by using the ISO C bind-
ings of the FORTRAN 2003 standard. Runtime requirements are equally mini-
mal. Matrix generation has negligible memory overhead, requiring only a few KiB
workspace to store lookup tables and similar information.

The key feature of ScaMaC is scalability, since the matrix rows (or columns)
can be generated independently and in arbitrary order. For example at Oakforest-
PACS (see Sec., a Hubbard matrix (see below) with dimension > 9 x 10° and
> 1.5 x 10! non-zeros is generated in less than a minute, using 2'° MPI processes
each of which generates an average of 1.5 x 10° rows per second. As explained, the
task of efficiently storing or using the matrix is left to the calling program.

ScaMaC is accompanied by a small toolkit for exploration of the collection. The
toolkit addresses some basic tasks such as querying matrix information or plot-
ting the sparsity pattern, but is not intended to compete with production-level code
or full-fledged solver libraries, as the ESSEX project provides with the BEAST,
GHOST, and PHIST libraries.

Equipping Sparse Solvers For Exascale 33

At the momenm the matrix generators included in ScaMacC strongly reflect our
personal research interests in quantum physics, but the ScaMaC framework is en-
tirely flexible and allows for easy inclusion of new types of matrices, provided that
they can be generated in a scalable way. The next update (scheduled for spring
2020) will extend ScaMaC primarily with matrix generators for standard partial dif-
ferential equations, including stencil matrices and finite element discretizations for
advection-diffusion and elasticity problems, wave propagation, and the Schrédinger
equation. Additional examples that are well suited for scalable generation are regu-
lar and irregular graph Laplacians, which have gained renewed interest in the context
of machine learning [16}/60].

To obtain an idea of the ‘real-world’ application matrices already contained in
ScaMaC, consider two examples: The celebrated Hubbard model of condensed mat-
ter physics (Hubbard) [[34] and a theoretical model for excitons in the cuprous oxide
from our own research in this field (Exciton) [4]]. These matrices appear as Hamil-
tonians in the Schrodinger equation, and thus are either symmetric real (Hubbard)
or Hermitian complex (Exciton). The respective application requires a moderate
number (typically, 10 — 1000) of extremal or interior eigenpairs, which is less than
0.1% of the spectrum. Other ScaMaC generators provide general (non-symmetric
or non-Hermitian) matrices, with a variety of sparsity patterns, spectral properties,
etc. All generators depend on a number of application-specific parameter which
are partly listed in Table [2] for the Hubbard and Exciton generator.

For the Hubbard example, two parameters determine the matrix dimension and
sparsity pattern: n_fermions gives the number electrons with a spin-up or spin-down
orientation, n_sites the number of orbitals occupied by the electrons. In terms of
these parameters, the matrix dimension is D = (nf?;li:‘?gn J ? This dependency results
in the rapid growth of D shown in Table[3] In the physically very interesting case of
half-filling (n_fermions = n_sites/2 = n) we have asymptotically D ~ 2"/ /(7 /2)n,
that is, exponential growth of D.

The Exciton example has the more moderate dependence D = 3(2L + 1)3 (see
Table [3). Here, the parameter L is a geometric cutoff that limits the maximal dis-
tance between the electron and hole that constitute the exciton. This example has
a number of other parameters that are adapted literally from [4]. These parameters
enter into the matrix entries, and thus affect the matrix spectrum and, finally, the
algorithmic hardness of computing the eigenvalues of interest that determine the
physical properties of the exciton.

Both Hubbard and Exciton are examples of difficult matrices, albeit for differ-
ent reasons. For Hubbard, one unresolved challenge is to compute multiple interior
eigenvalues for large n_fermions, n_sites, which becomes extremely difficult be-
cause of the rapid growth of the matrix dimension (specialized techniques for the
Hubbard model such as the density-matrix renormalization group [72]] cannot com-
pute interior eigenvalues). Due to the irregular sparsity pattern of the Hubbard ma-

16 In version 0.8.2, ScaMaC contains 15 different matrix generators with a total of 95 parameters.

17 For a full list of generators and parameters, consult the ScaMaC documentation included with
the code, or at https://alvbit.bitbucket.io/scamac_docs/_matrices_page.html.

https://alvbit.bitbucket.io/scamac_docs/_matrices_page.html

34 Wellein et al.

Table 2: Parameters of the Hubbard and Exciton matrix generator in the ScaMaC.

Hubbard Exciton
matrix type: symmetric real matrix type: Hermitian complex

int n_sites number of sites int L cube length

int n_fermions number of fermions double so spin orbit
double t hopping strength double ex exchange
double U Hubbard interaction double mlh mass light hole
double mhh mass heavy hole

double me mass electron

doubl dielectri tant

double ranpot random potential ouble eps ielectric constan

rngseed seed random seed

trices (see Figure[I9|below), already the communication overhead of spMVM poses
a serious obstacle to scalability and parallel efficiency. For Exciton, which are es-
sentially stencil-like matrices of moderate size, the challenge is to compute some
hundred eigenvalues out of a strongly clustered spectrum. Here, it is the poor con-
vergence of iterative eigenvalue solvers for nearly degenerate eigenvalues that ren-
ders this problem hard. Thanks to the algorithmic advances in the ESSEX project,
we now have reached a position that allows for future progress on these problems.

ScaMaC comes with several convenient features. For example, the Hubbard ma-
trix includes the parameter ranpot to switch on a random potential. Random num-
bers in ScaMaC are entirely reproducible, and independent of the number of threads
or processes that call the ScaMaC routines, or of the order in which the matrix
rows are generated. An identical random seed gives the same matrix under all cir-
cumstances. In particular, individual matrix rows can be reconstructed at any time,
which simplifies a fault-tolerant program design (see Section [5.3). Another feature
is the possibility to effortlessly generate the (conjugate) transpose of non-symmetric
(non-Hermitian) matrices, which is considerably easier than constructing the trans-
pose of a (distributed) sparse matrix after generation.

Table 3: Matrix dimension D for the Hubbard and Exciton example, as a function
of the respective parameter n_sites (and default value n_fermions = 5) or L.

Hubbard Exciton
n_sites D L D
10 63 504 10 27783
15 9 018 009 20 206 763
20 240 374 016 50 3090903
25 2 822 796 900 100 24 361 803
30 20 307 960 036 150 81812 703

40 432 974 528 064 200 193 443 603

Equipping Sparse Solvers For Exascale 35

6 Application Results

6.1 Eigensolvers in quantum physics: Graphene, topological
insulators, and beyond

Because of the linearity of the Schrodinger equation, quantum physics is a paradigm
for numerical linear algebra applications. Historically, some application cases, such
as the computation of the ground state (i.e. of the eigenvector to the minimal eigen-
value), have received so much attention that only gradual progress remains possible
nowadays. In the ESSEX project we instead address two major cases where novel
algorithmic improvements and systematic utilization of large-scale computing re-
sources through state-of-the-art implementations still result in substantial qualita-
tive progress. These two cases are the computation of (i) extreme eigenvalues with
high degeneracy, which is addressed with a block Jacobi-Davidson algorithm, (ii)
multiple interior eigenvalues, which is addressed by various filter diagonalization
techniques. Application case (i) has been documented in [[66]], including the exam-
ple of spin chain matrices (SpinChainXXZ in the ScaMaC). For application case
(ii) the primary quantum physics example are graphene [13]] and topological insula-
tors [31] (Graphene and TopIns in the ScaMaC). For these examples, eigenvalues
towards the center of the spectrum, near the Fermi energy of the material, are those
of interest. This situation is similar to applications in quantum chemistry and den-
sity functional theory, but in our case the matrices represent a full (disordered or
structured) two or three-dimensional domain, and are usually larger than those con-
sidered elsewhere [58]].

Starting with the paper [63]] on Chebyshev filter diagonalization (ChebFD) and
culminating in the BEAST software package (see Section [3.2), the computation
of interior eigenvalues of large-to-huge graphene and topological insulator matri-
ces has been successfully demonstrated with ESSEX algorithms, using polynomial
filters derived from Chebyshev polynomials. Already with the simple ChebFD al-
gorithm we could compute Ny ~ 100 eigenvectors from the center of the spectrum
of a matrix with dimension D ~ 10° (i.e. an effective problem size Ny X D ~ 10'h),
in order to understand the electronic properties of a structured topological insulator
(see Figure 13 in [63]]). With improved filter coefficients and a more sophisticated
implementation, the polynomial filters in the (P-) BEAST package deal with such
problems at reduced computational cost (see Section[3.2). Such large-scale compu-
tations heavily rely on the optimized spMMVM and TSMM kernels of the GHOST
library (see Section3)).

To appreciate the numerical progress reflected in these numbers one should note
the different scaling of the numerical effort MNyiym (measured in terms of the domi-
nant operation of spMVM) for the computation of extreme and interior eigenvalues
(cf. the discussion in [63]). In an idealized situation with equidistant eigenvalues,
we have roughly Nyywm ~ D'/ for extreme but Nmvm ~ D for interior eigenvalues.
For the D ~ 10° example, we have to compensate for a factor 10*~10° to enable
computation of interior instead of extreme eigenvalues.

36 Wellein et al.

Algorithm and software development in ESSEX has been to a large degree
application-driven. Now, at the end of the ESSEX project, where the algorithms
for our main application cases have become available, we follow two ways to go
beyond the initial quantum physics applications. First, entirely new applications can
now be addressed with ESSEX software, extending our efforts to non-linear and
non-Hermitian problems (see Section [6.2)). Second, relevant applications such as
the Hubbard and Exciton examples (see Section [5.5)) still fit into the two major
application areas already addressed in ESSEX, but further increase the computa-
tional complexity. For Exciton, the strongly clustered spectrum with many nearly-
degenerate eigenvalues leads to a numerical effort Nyjynm > D'/? already for ex-
treme eigenvalues. For Hubbard, the huge matrix dimension D is a serious obstacle
for the computation of interior eigenvalues.

The Hubbard matrices also hint at an application-specific issue of general inter-
est that we encountered but could not solve within ESSEX. Specifically, it is the
complicated sparsity pattern of many of our quantum physics matrices (see Fig-
ure[19) that adversely affects the parallel efficiency of distributed spMVM, and thus
of our entire software solutions. Node-level performance engineering is here easily
overcompensated by communication overhead. Unfortunately, the communication
overhead is not reduced by standard matrix reordering strategies [62,(73}/87]]. This
problem can be partially alleviated by overlapping communication with computa-
tion, as in the spMMVM (see Section Q]), but a full solution to restore parallel effi-
ciency is not yet available. Clearly, our different application scenarios still provide
enough incentive to think about future numerical, algorithmic, and computational
developments beyond the ESSEX project.

\Y

AN\ \ \\\
AN \\1\

Fig. 19 Sparsity pattern of the Hubbard \ N\
(Hubbard,n_sites=40,n_fermions=20)
and spin chain (SpinChainXXZ,

n_sites=32,n_up=8) example.

77

6.2 New applications in nonlinear dynamical systems

The block Jacobi-Davidson QR eigensolver in PHIST is capable of solving non-
symmetric and generalized eigenvalue problems of the form

Ax = ABx, ()

Equipping Sparse Solvers For Exascale 37

where B should be symmetric and positive definite. In [78]], we exploited sev-
eral unique features of this implementation to study the linear stability of a three-
dimensional reaction-diffusion equation: the Jacobian is non-symmetric, the pre-
conditioner was implemented in Epetra (which can be used directly as a backend
for PHIST), and the high degree of symmetry in the model yields eigenvalues with
high geometric multiplicity (up to 24). We therefore use a relatively large block size
of 8 for these computations to achieve convergence to the desired 20-50 eigenpairs
(Ai,x;), with the real part of A; near 0. In a recent Ph.D. thesis [[77]], the solver was
also used for studying the linear stability of incompressible flow problems. Here B is
in fact only semi-definite, and the preconditioner has to make sure that the solution
stays in the ‘divergence-free space’, in which the velocity field satisfies V-u =0
and B induces a norm.

Another ongoing effort concerning dynamical systems is the use of PHIST to
parallelize the dynamical systems analysis tool PyNCT, which has as its main appli-
cation the study of superconductors [[85]]. We have taken first steps to use PHIST as
backend for the Python-based algorithms in PyNCT. Furthermore, it is possible to
solve the eigenvalue problems arising in PyNCT directly by the BJDQR method in
PHIST. Our goal here is the scalable parallel and fully automatic computation of
bifurcation diagrams using PyNCT and any backend supported by PHIST.

The Statistical Learning Lab led by Dr. Marina Meila at the University of Wash-
ington started to use the PHIST eigensolver to compute spectral gaps for Laplacian
matrices obtained from conformation trajectories in molecular dynamics simula-
tions, and other scientific data [[16,60]. These are symmetric positive definite matri-
ces whose dimensions equal the number of simulation steps, typically of the order
of n = 10°. When the data intrinsic dimension d is fixed, and much smaller than n
(in our examples d < 10), the Laplacian is a sparse matrix. The sparsity pattern is
not regular, and it is data dependent, as it reflects the neighborhood relationships in
the data. Hence, in densely sampled regions rows will have many more non-zeros
than in the sparsely populated regions of the data. In a manifold embedding algo-
rithm, the eigengaps identify the optimal number of coordinates in which to embed
the data. Furthermore, for data sizes n > 10°, PHIST is used to compute the diffu-
sion map embedding itself for the higher frequency coordinates for which existing
methods are prohibitively slow.

7 International Collaborations

The internationalisation effort in the second phase of SPPEXA has fostered the
ESSEX-II activities in several directions. First and foremost it amplified the sci-
entific expertise in the project. Soon it became clear that complementing knowl-
edge and developments could be leveraged across the partners. A specific benefit
of the collaboration between German and Japanese partners is their very different
background in terms of HPC infrastructures.Through close personal collaboration
within the project all partners could easily access and use latest supercomputers on

38 Wellein et al.

either side (see and note that the BEAST framework has also been ported to
the K-computer). Together with the joint collaboration on scientific problems and
software development a steady exchange evolved with many personal research visits
which also opened up collaboration with partners not involved directly in ESSEX-II.

The results described in Section [3.1 on preconditioners are a direct result of the
collaboration of ESSEX-II with ppOpen-HPCf;g] project led by Univ. of Tokyo. On
the other hand, the CRAFT library developed at Univ. of Erlangen is utilized in an
FEM code of Univ. of Tokyo and is part of a follow on JHPCN project with the
German partner involved as associated partner.

Collaboration between Japanese and German working groups made possible the
expansion of the BEAST framework for projection based eigensolvers to include
Sakurai—Sugiura methods. Various numerical and theoretical issues associated with
the implementation of the solver within an iterative framework were resolved, and
new ideas explored during research visits. Results based on this collaboration have
so far been presented in multiple conferences and a paper in preparation [35].

The linear systems arising from numerical quadrature in the BEAST-C and
BEAST-M framework were used in the testing and development of an Block
Cholesky-based ILU preconditioner. The integration of an interface to this solver
into BEAST has begun. Examining strategies and expectations for solving these ex-
treme ill-conditioned problems was a point of intense discussion and collaboration
between working groups. One results was the development of RACE (see[3.4). Be-
yond the discussion between several Japanese and German ESSEX-II partners also a
strong collaboration with the Swiss partner (O. Schenk) of EXASTEEL-II evolved,
who is an expert on direct solvers and graph partitioning. In this context also a col-
laboration with T. Iwashita (Hokkaido Univ., Japan) started in terms of hardware
efficient coloring.

Throughout the project, the variety of large matrices continuously added to the
ScaMacC library allowed for testing with a variety of realistically challenging prob-
lems of both real and complex types in all ESSEX-II working groups.

Acknowledgements The project is funded by the German DFG priority programme 1648 (Soft-
ware for Exascale Computing) under the ESSEX-I/IT (Equipping Sparse Solvers for Exascale)
projects. We are grateful for computer time granted on the LRZ SuperMUC and SuperMUC-NG,
the CSCS Piz Daint, and the OakForest PACS systems.

References

1. Alappat, C.L., Hager, G., Schenk, O., Thies, J., Basermann, A., Bishop, A.R., Fehske, H.,
Wellein, G.: A recursive algebraic coloring technique for hardware-efficient symmetric sparse
matrix-vector multiplication. CoRR abs/1907.06487 (2019). URL http://arxiv.org/abs/
1907.06487. Submitted.

2. Alvermann, A., Basermann, A., Bungartz, H.J., Carbogno, C., Ernst, D., Fehske, H., Futamura,
Y., Galgon, M., Hager, G., Huber, S., Huckle, T., Ida, A., Imakura, A., Kawai, M., Kocher, S.,

18 http://ppopenhpc.cc.u-tokyo.ac. jp/ppopenhpc/

http://arxiv.org/abs/1907.06487
http://arxiv.org/abs/1907.06487
http://ppopenhpc.cc.u-tokyo.ac.jp/ppopenhpc/

Equipping Sparse Solvers For Exascale 39

10.

11.

12.

13.

14.

Kreutzer, M., Kus, P., Lang, B., Lederer, H., Manin, V., Marek, A., Nakajima, K., Nemec, L.,
Reuter, K., Rippl, M., Rohrig-Zollner, M., Sakurai, T., Scheffler, M., Scheurer, C., Shahzad, F.,
Simoes Brambila, D., Thies, J., Wellein, G.: Benefits from using mixed precision computations
in the ELPA-AEO and ESSEX-II eigensolver projects. Japan Journal of Industrial and Applied
Mathematics 36, 699-717 (2019). DOI 10.1007/s13160-019-00360-8. URL https://doi.
org/10.1007/s13160-019-00360-8

. Alvermann, A., Basermann, A., Fehske, H., Galgon, M., Hager, G., Kreutzer, M., Krdmer, L.,

Lang, B., Pieper, A., Rohrig-Zollner, M., Shahzad, F., Thies, J., Wellein, G.: ESSEX: Equip-
ping sparse solvers for exascale. In: L. Lopes, et al. (eds.) Euro-Par 2014: Parallel Processing
Workshops, LNCS, vol. 8806, pp. 577-588. Springer (2014)

. Alvermann, A., Fehske, H.: Exciton mass and exciton spectrum in the cuprous oxide. J. Phys.

B 51(4), 044001 (2018). DOI 10.1088/1361-6455/a2a060. URL http://stacks.iop.org/
0953-4075/51/i=4/a=044001

. Anzt, H., Tomov, S., Dongarra, J.: Accelerating the LOBPCG method on GPUs using a

blocked Sparse Matrix Vector Product. University of Tennessee Innovative Computing
Laboratory Technical Report UT-EECS-14-731 (2014). URL jhttp://www.eecs.utk.edu/
resources/library/589

. Anzt, H., Tomov, S., Dongarra, J.: Implementing a sparse matrix vector product for the SELL-

C/SELL-C-o formats on NVIDIA GPUs. University of Tennessee Innovative Computing
Laboratory Technical Report UT-EECS-14-727 (2014). URL jhttp://www.eecs.utk.edu/
resources/library/585

. Asakura, J., Sakurai, T., Tadano, H., Ikegami, T., Kimura, K.: A numerical method for non-

linear eigenvalue problems using contour integrals. JSIAM Letters 1, 52-55 (2009). DOI
10.14495/jsiaml.1.52

. Asakura, J., Sakurai, T., Tadano, H., Ikegami, T., Kimura, K.: A numerical method for poly-

nomial eigenvalue problems using contour integral. Japan Journal of Industrial and Ap-
plied Mathematics 27(1), 73-90 (2010). DOI 10.1007/s13160-010-0005-x. URL https:
//doi.org/10.1007/s13160-010-0005-x

. Balay, S., Abhyankar, S., Adams, M.F., Brown, J., Brune, P., Buschelman, K., Dalcin, L.,

Dener, A., Eijkhout, V., Gropp, W.D., Karpeyev, D., Kaushik, D., Knepley, M.G., May, D.A.,
Mclnnes, L.C., Mills, R.T., Munson, T., Rupp, K., Sanan, P., Smith, B.F., Zampini, S., Zhang,
H., Zhang, H.: PETSc Web page. https://wuw.mcs.anl.gov/petsc (2019). URL https:
//www.mcs.anl.gov/petsc

Barel, M.V., Kravanja, P.: Nonlinear eigenvalue problems and contour integrals. Journal
of Computational and Applied Mathematics 292, 526-540 (2016). DOI https://doi.org/10.
1016/j.cam.2015.07.012. URL http://wuw.sciencedirect.com/science/article/pii/
S037704271500374X

Bartlett, R., Demeshko, 1., Gamblin, T., Hammond, G., Heroux, M., Johnson, J., Klinvex,
A., Li, X., Mclnnes, L., Moulton, J.D., Osei-Kuffuor, D., Sarich, J., Smith, B., Willenbring,
J., Yang, U.M.: xSDK foundations: Toward an extreme-scale scientific software development
kit. Supercomput. Front. Innov.: Int. J. 4(1), 69-82 (2017). DOI 10.14529/jsfi170104. URL
https://doi.org/10.14529/js£i170104

Beyn, W.J.: An integral method for solving nonlinear eigenvalue problems. Lin-
ear Algebra and its Applications 436(10), 3839-3863 (2012). DOI https://doi.org/10.
1016/j.1aa.2011.03.030. URL http://www.sciencedirect.com/science/article/pii/
50024379511002540. Special Issue dedicated to Heinrich Voss’s 65th birthday

Castro Neto, A.H., Guinea, F., Peres, N.M.R., Novoselov, K.S., Geim, A.K.: The electronic
properties of graphene. Rev. Mod. Phys. 81, 109-162 (2009). DOI 10.1103/RevModPhys.81.
109. URL https://link.aps.org/doi/10.1103/RevModPhys.81.109

Chen, H., Imakura, A., Sakurai, T.: Improving backward stability of Sakurai-Sugiura method
with balancing technique in polynomial eigenvalue problem. Applications of Mathematics
62(4), 357-375 (2017). DOI 10.21136/AM.2017.0016-17. URL https://doi.org/10.
21136/AM.2017.0016-17

https://doi.org/10.1007/s13160-019-00360-8
https://doi.org/10.1007/s13160-019-00360-8
http://stacks.iop.org/0953-4075/51/i=4/a=044001
http://stacks.iop.org/0953-4075/51/i=4/a=044001
http://www.eecs.utk.edu/resources/library/589
http://www.eecs.utk.edu/resources/library/589
http://www.eecs.utk.edu/resources/library/585
http://www.eecs.utk.edu/resources/library/585
https://doi.org/10.1007/s13160-010-0005-x
https://doi.org/10.1007/s13160-010-0005-x
https://www.mcs.anl.gov/petsc
https://www.mcs.anl.gov/petsc
https://www.mcs.anl.gov/petsc
http://www.sciencedirect.com/science/article/pii/S037704271500374X
http://www.sciencedirect.com/science/article/pii/S037704271500374X
https://doi.org/10.14529/jsfi170104
http://www.sciencedirect.com/science/article/pii/S0024379511002540
http://www.sciencedirect.com/science/article/pii/S0024379511002540
https://link.aps.org/doi/10.1103/RevModPhys.81.109
https://doi.org/10.21136/AM.2017.0016-17
https://doi.org/10.21136/AM.2017.0016-17

40

15.

16.

17.

18.

19.

20.

21.
22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

Wellein et al.

Chen, H., Maeda, Y., Imakura, A., Sakurai, T., Tisseur, F.: Improving the numerical stability
of the Sakurai-Sugiura method for quadratic eigenvalue problems. JSIAM Letters 9, 17-20
(2017). DOI 10.14495/jsiam1.9.17

Chen, Y.C., Meila, M.: Selecting the independent coordinates of manifolds with large aspect
ratios. arXiv e-prints arXiv:1907.01651 (2019)

Davis, T.A., Hu, Y.: The University of Florida sparse matrix collection. ACM Trans. Math.
Softw. 38(1), 1:1-1:25 (2011). DOI 10.1145/2049662.2049663. URL http://doi.acm.org/
10.1145/2049662.2049663

Druskin, V., Knizhnerman, L.: Two polynomial methods to compute functions of symmetric
matrices. U.S.S.R. Comput. Maths. Math. Phys. 29(6), 112-121 (1989)

Edwards, H.C., Trott, C.R., Sunderland, D.: Kokkos: Enabling manycore performance porta-
bility through polymorphic memory access patterns. Journal of Parallel and Distributed Com-
puting 74(12), 3202 — 3216 (2014). DOI https://doi.org/10.1016/j.jpdc.2014.07.003. URL
http://www.sciencedirect.com/science/article/pii/S0743731514001257. Domain-
Specific Languages and High-Level Frameworks for High-Performance Computing

Ernst, D., Hager, G., Thies, J., Wellein, G.: Performance engineering for a tall & skinny matrix
multiplication kernel on GPUs. CoRR abs/1905.03136 (2019). URL http://arxiv.org/
abs/1905.03136. Accepted for publication at PPAM’19, the 13h International Conference
on Parallel Processing and Applied Mathematics, Bialystok, Poland, September 8-11, 2019
EXASTEEL project website: www.numerik.uni-koeln.de/14426.html

Fukasawa, T., Shahzad, F., Nakajima, K., Wellein, G.: pFEM-CRAFT: A Library for
Application-Level Fault-Resilience Based on the CRAFT Framework. In: Poster at the 2018
SIAM Conference on Parallel Processing for Scientific Computing (SIAM PP18). Tokyo,
Japan (2018)

Galgon, M., Krimer, L., Lang, B.: Improving projection-based eigensolvers via adaptive
techniques. Numerical Linear Algebra with Applications 25(1), 2124 (2018). DOI
10.1002/nla.2124. URL http://dx.doi.org/10.1002/nla.2124

Galgon, M., Kriamer, L., Lang, B., Alvermann, A., Fehske, H., Pieper, A.: Improving robust-
ness of the FEAST algorithm and solving eigenvalue problems from graphene nanoribbons.
PAMM 14(1), 821-822 (2014)

Galgon, M., Kriamer, L., Lang, B., Alvermann, A., Fehske, H., Pieper, A., Hager, G., Kreutzer,
M., Shahzad, F., Wellein, G., Basermann, A., Rohrig-Zollner, M., Thies, J.: Improved coef-
ficients for polynomial filtering in ESSEX. In: T. Sakurai, S.L. Zhang, T. Imamura, Y. Ya-
mamoto, Y. Kuramashi, T. Hoshi (eds.) Eigenvalue Problems: Algorithms, Software and Ap-
plications in Petascale Computing, pp. 63—79. Springer International Publishing, Cham (2017)
Galgon, M., Kriamer, L., Thies, J., Basermann, A., Lang, B.: On the parallel iterative solution
of linear systems arising in the FEAST algorithm for computing inner eigenvalues. Parallel
Computing 49, 153-163 (2015)

Gamblin, T., LeGendre, M.P,, Collette, M.R., Lee, G.L., Moody, A., de Supinski, B.R., Futral,
W.S.: The Spack package manager: Bringing order to HPC software chaos (2015). LLNL-
CONF-669890

Giorgi, P, Vialla, B.: Generating optimized sparse matrix vector product over finite fields.
In: Proceedings of ICMS 2014: Fourth International Congress on Mathematical Software,
Seoul, Korea., vol. 8592, pp. 685-690. Springer LNCS (2014). URL http://www.lirmm.
fr/~giorgi/icms2014-giovia.pdf

Gordon, D., Gordon, R.: CGMN revisited: Robust and efficient solution of stiff linear sys-
tems derived from elliptic partial differential equations. ACM Trans. Math. Softw. 35(3),
18:1-18:27 (2008). DOI 10.1145/1391989.1391991. URL http://doi.acm.org/10.1145/
1391989.1391991

Guettel, S., Polizzi, E., Tang, P., Viaud, G.: Zolotarev quadrature rules and load balancing for
the FEAST eigensolver. SIAM Journal on Scientific Computing 37(4), A2100-A2122 (2015).
DOI 10.1137/140980090. URL https://doi.org/10.1137/140980090

Hasan, M.Z., Kane, C.L.: Colloquium: Topological insulators. Rev. Mod. Phys. 82, 3045-
3067 (2010). DOI 10.1103/RevModPhys.82.3045. URL https://link.aps.org/doi/10.
1103/RevModPhys.82.3045

http://doi.acm.org/10.1145/2049662.2049663
http://doi.acm.org/10.1145/2049662.2049663
http://www.sciencedirect.com/science/article/pii/S0743731514001257
http://arxiv.org/abs/1905.03136
http://arxiv.org/abs/1905.03136
www.numerik.uni-koeln.de/14426.html
http://dx.doi.org/10.1002/nla.2124
http://www.lirmm.fr/~giorgi/icms2014-giovia.pdf
http://www.lirmm.fr/~giorgi/icms2014-giovia.pdf
http://doi.acm.org/10.1145/1391989.1391991
http://doi.acm.org/10.1145/1391989.1391991
https://doi.org/10.1137/140980090
https://link.aps.org/doi/10.1103/RevModPhys.82.3045
https://link.aps.org/doi/10.1103/RevModPhys.82.3045

Equipping Sparse Solvers For Exascale 41

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

42.

43.

44,

45.

46.

Hasegawa, T., Imakura, A., Sakurai, T.: Recovering from accuracy deterioration in the contour
integral-based eigensolver. JSIAM Letters 8, 1-4 (2016). DOI 10.14495/jsiaml.8.1

Heroux, M.A., Bartlett, R.A., Howle, V.E., Hoekstra, R.J., Hu, J.J., Kolda, T.G., Lehoucq,
R.B., Long, K.R., Pawlowski, R.P., Phipps, E.T., Salinger, A.G., Thornquist, H.K., Tumi-
naro, R.S., Willenbring, J.M., Williams, A., Stanley, K.S.: An overview of the Trilinos project.
ACM Trans. Math. Softw. 31(3), 397-423 (2005). DOI http://doi.acm.org/10.1145/1089014.
1089021

Hubbard, J., Flowers, B.H.: Electron correlations in narrow energy bands. Proc. Roy. Soc.
London, Ser. A 276(1365), 238-257 (1963). DOI 10.1098/rspa.1963.0204. URL https:
//royalsocietypublishing.org/doi/abs/10.1098/rspa.1963.0204

Huber, S., Futamura, Y., Galgon, M., Imakura, A., Lang, B., Sakurai, T.: Flexible subspace it-
eration with moments for an effective contour-integration based eigensolver (2019). In prepa-
ration

Ikegami, T., Sakurai, T.: Contour integral eigensolver for non-hermitian systems: A Rayleigh-
Ritz-type approach. Taiwanese Journal of Mathematics 14(3A), 825-837 (2010). URL http:
//www.jstor.org/stable/43834819

Ikegami, T., Sakurai, T., Nagashima, U.: A filter diagonalization for generalized eigenvalue
problems based on the Sakurai—Sugiura projection method. Journal of Computational and
Applied Mathematics 233(8), 1927-1936 (2010). DOI https://doi.org/10.1016/j.cam.2009.09.
029. URL http://www.sciencedirect.com/science/article/pii/S0377042709006529
Imakura, A., Du, L., Sakurai, T.: A block Arnoldi-type contour integral spectral projection
method for solving generalized eigenvalue problems. Applied Mathematics Letters 32, 22-27
(2014). DOI https://doi.org/10.1016/j.am1.2014.02.007. URL http://www.sciencedirect.
com/science/article/pii/S0893965914000421

Imakura, A., Du, L., Sakurai, T.: Error bounds of Rayleigh-Ritz type contour integral-
based eigensolver for solving generalized eigenvalue problems. Numerical Algorithms 71(1),
103-120 (2016). DOI 10.1007/s11075-015-9987-4. URL https://doi.org/10.1007/
s11075-015-9987-4

Imakura, A., Du, L., Sakurai, T.: Relationships among contour integral-based methods for
solving generalized eigenvalue problems. Japan Journal of Industrial and Applied Mathemat-
ics 33(3), 721-750 (2016). DOI 10.1007/s13160-016-0224-x. URL https://doi.org/10.
1007/s13160-016-0224-x

Imakura, A., Futamura, Y., Sakurai, T.: An error resilience strategy of a complex moment-
based eigensolver. In: T. Sakurai, S.L. Zhang, T. Imamura, Y. Yamamoto, Y. Kuramashi,
T. Hoshi (eds.) Eigenvalue Problems: Algorithms, Software and Applications in Petascale
Computing, pp. 1-18. Springer International Publishing, Cham (2017)

Imakura, A., Sakurai, T.: Block Krylov-type complex moment-based eigensolvers for solving
generalized eigenvalue problems. Numerical Algorithms 75(2), 413-433 (2017). DOI 10.
1007/s11075-016-0241-5. URL https://doi.org/10.1007/s11075-016-0241-5
Imakura, A., Sakurai, T.: Block SS—CAA: A complex moment-based parallel nonlinear
eigensolver using the block communication-avoiding Arnoldi procedure. Parallel Com-
puting 74, 34-48 (2018). DOI https://doi.org/10.1016/j.parco.2017.11.007. URL http:
//www.sciencedirect.com/science/article/pii/S0167819117301886, Parallel Matrix
Algorithms and Applications (PMAA’16)

Iwashita, T., Nakashima, H., Takahashi, Y.: Algebraic block multi-color ordering method for
parallel multi-threaded sparse triangular solver in iccg method. In: Proceedings of the 2012
IEEE 26th International Parallel and Distributed Processing Symposium, IPDPS *12, pp. 474—
483. IEEE Computer Society, Washington, DC, USA (2012). DOI 10.1109/IPDPS.2012.51
K. Sato et al.: Design and modeling of a non-blocking checkpointing system. In: Proceedings
of the International Conference on High Performance Computing, Networking, Storage and
Analysis, pp. 19:1-19:10. IEEE Computer Society Press, Los Alamitos, CA, USA (2012)
Kawai, M., Ida, A., Nakajima, K.: Hierarchical parallelization of multi-coloring algorithms for
block IC preconditioners. In: 2017 IEEE 19th International Conference on High Performance
Computing and Communications; IEEE 15th International Conference on Smart City; IEEE

https://royalsocietypublishing.org/doi/abs/10.1098/rspa.1963.0204
https://royalsocietypublishing.org/doi/abs/10.1098/rspa.1963.0204
http://www.jstor.org/stable/43834819
http://www.jstor.org/stable/43834819
http://www.sciencedirect.com/science/article/pii/S0377042709006529
http://www.sciencedirect.com/science/article/pii/S0893965914000421
http://www.sciencedirect.com/science/article/pii/S0893965914000421
https://doi.org/10.1007/s11075-015-9987-4
https://doi.org/10.1007/s11075-015-9987-4
https://doi.org/10.1007/s13160-016-0224-x
https://doi.org/10.1007/s13160-016-0224-x
https://doi.org/10.1007/s11075-016-0241-5
http://www.sciencedirect.com/science/article/pii/S0167819117301886
http://www.sciencedirect.com/science/article/pii/S0167819117301886

4

47.

48.

49.

50.

51

52.

53.

54.

55.

56.

57.

58.

59.

60.

61.

62.

Wellein et al.

3rd International Conference on Data Science and Systems (HPCC/SmartCity/DSS), pp. 138—
145. IEEE (2017)

Kawai, M., Ida, A., Nakajima, K.: Modified IC preconditioner of CG method for ill-
conditioned problems. Tech. Rep. Vol. 2017-HPC-158, No.9, IPSJ SIG (2017). In Japanese
Kawai, M., Ida, A., Nakajima, K.: Higher precision for block ILU preconditioner. In:
CoSaS2018. FAU (2018)

Kawai, M., Iwashita, T., Nakashima, H., Marques, O.: Parallel smoother based on block red-
black ordering for multigrid Poisson solver. In: High Performance Computing for Computa-
tional Science — VECPAR 2012, pp. 292-299 (2013)

Kramer, L.: Integration based solvers for standard and generalized Hermitian eigenvalue prob-
lems. Ph.D. thesis, Bergische Universitit Wuppertal (2014). URL http://nbn-resolving.
de/urn/resolver.pl?urn=urn:nbn:de:hbz:468-20140701-112141-6

Kréamer, L., Di Napoli, E., Galgon, M., Lang, B., Bientinesi, P.: Dissecting the FEAST algo-
rithm for generalized eigenproblems. J. Comput. Appl. Math. 244, 1-9 (2013)

Kreutzer, M.: Performance engineering for exascale-enabled sparse linear algebra building
blocks. Ph.D. thesis, FAU Erlangen-Niirnberg, Technische Fakultit, Erlangen (2018). DOI
10.25593/978-3-96147-104-1

Kreutzer, M., Ernst, D., Bishop, A.R., Fehske, H., Hager, G., Nakajima, K., Wellein, G.:
Chebyshev filter diagonalization on modern manycore processors and GPGPUs. In: R. Yokota,
M. Weiland, D. Keyes, C. Trinitis (eds.) High Performance Computing, pp. 329-349. Springer
International Publishing, Cham (2018)

Kreutzer, M., Hager, G., Wellein, G., Fehske, H., Bishop, A.: A unified sparse matrix data
format for efficient general sparse matrix-vector multiplication on modern processors with
wide SIMD units. SIAM Journal on Scientific Computing 36(5), C401-C423 (2014). DOI
10.1137/130930352. URL https://doi.org/10.1137/130930352

Kreutzer, M., Pieper, A., Hager, G., Wellein, G., Alvermann, A., Fehske, H.: Performance
engineering of the Kernel Polynomal Method on large-scale CPU-GPU systems. In: 2015
IEEE International Parallel and Distributed Processing Symposium, pp. 417-426 (2015). DOI
10.1109/1IPDPS.2015.76

Kreutzer, M., Thies, J., Pieper, A., Alvermann, A., Galgon, M., Rohrig-Zollner, M., Shahzad,
F., Basermann, A., Bishop, A.R., Fehske, H., Hager, G., Lang, B., Wellein, G.: Performance
engineering and energy efficiency of building blocks for large, sparse eigenvalue computa-
tions on heterogeneous supercomputers. In: H.J. Bungartz, P. Neumann, W.E. Nagel (eds.)
Software for Exascale Computing — SPPEXA 2013-2015, pp. 317-338. Springer Interna-
tional Publishing, Cham (2016). DOI 10.1007/978-3-319-40528-5_14

Kreutzer, M., Thies, J., Rohrig-Zollner, M., Pieper, A., Shahzad, F., Galgon, M., Basermann,
A., Fehske, H., Hager, G., Wellein, G.: GHOST: Building blocks for high performance sparse
linear algebra on heterogeneous systems. International Journal of Parallel Programming 45(5),
1046-1072 (2017). DOI 10.1007/s10766-016-0464-z. URL https://doi.org/10.1007/
s10766-016-0464-z

Li, R, Xi, Y., Erlandson, L., Saad, Y.: The Eigenvalues Slicing Library (EVSL): Algo-
rithms, implementation, and software. Preprint, available at http://www-users.cs.umn.
edu/~saad/software/EVSL/index.html

Matrix Market. https://math.nist.gov/MatrixMarket/. Accessed: 26 July 2019

Meila, M., Koelle, S., Zhang, H.: A regression approach for explaining manifold embedding
coordinates. arXiv e-prints arXiv:1811.11891 (2018)

Miithing, S., Ribbrock, D., Goddeke, D.: Integrating multi-threading and accelerators into
DUNE-ISTL. In: A. Abdulle, S. Deparis, D. Kressner, F. Nobile, M. Picasso, A. Quarteroni
(eds.) Numerical Mathematics and Advanced Applications - ENUMATH 2013, Lecture Notes
in Computational Science and Engineering, vol. 103, pp. 601-609. Springer (2014). DOI
10.1007/978-3-319-10705-9-59

ParMETIS - parallel graph partitioning and fill-reducing matrix ordering. URL http:
//glaros.dtc.umn.edu/gkhome/metis/parmetis/overview

http://nbn-resolving.de/urn/resolver.pl?urn=urn:nbn:de:hbz:468-20140701-112141-6
http://nbn-resolving.de/urn/resolver.pl?urn=urn:nbn:de:hbz:468-20140701-112141-6
https://doi.org/10.1137/130930352
https://doi.org/10.1007/s10766-016-0464-z
https://doi.org/10.1007/s10766-016-0464-z
http://www-users.cs.umn.edu/~saad/software/EVSL/index.html
http://www-users.cs.umn.edu/~saad/software/EVSL/index.html
https://math.nist.gov/MatrixMarket/
http://glaros.dtc.umn.edu/gkhome/metis/parmetis/overview
http://glaros.dtc.umn.edu/gkhome/metis/parmetis/overview

Equipping Sparse Solvers For Exascale 43

63.

64.

65.

66.

67.

68.

69.

70.

71.

72.

73.

74.

75.

76.

71.

78.

79.

Pieper, A., Kreutzer, M., Alvermann, A., Galgon, M., Fehske, H., Hager, G., Lang, B., Wellein,
G.: High-performance implementation of Chebysheyv filter diagonalization for interior eigen-
value computations. J. Comput. Phys. 325, 226-243 (2016). URL http://dx.doi.org/10.
1016/73.jcp.2016.08.027

Polizzi, E.: Density-matrix-based algorithm for solving eigenvalue problems. Physical Review
B 79(11), 115112 (2009)

Polizzi, E.: Density-matrix-based algorithm for solving eigenvalue problems. Phys. Rev. B 79,
115112 (2009). DOI 10.1103/PhysRevB.79.115112. URL https://link.aps.org/doi/10.
1103/PhysRevB.79.115112

Rohrig-Zollner, M., Thies, J., Kreutzer, M., Alvermann, A., Pieper, A., Basermann, A., Hager,
G., Wellein, G., Fehske, H.: Increasing the performance of the Jacobi-Davidson method by
blocking. SIAM J. Sci. Comp. 37(6), 206-239 (2015). DOI 10.1137/140976017. URL
http://dx.doi.org/10.1137/140976017

Sakurai, T., Asakura, J., Tadano, H., Ikegami, T.: Error analysis for a matrix pencil of Hankel
matrices with perturbed complex moments. JSIAM Letters 1, 76-79 (2009). DOI 10.14495/
jsiaml.1.76

Sakurai, T., Futamura, Y., Imakura, A., Imamura, T.: Scalable Eigen-Analysis Engine for
Large-Scale Eigenvalue Problems, pp. 37-57. Springer Singapore, Singapore (2019). DOI
10.1007/978-981-13-1924-2_3. URL https://doi.org/10.1007/978-981-13-1924-2_3
Sakurai, T., Sugiura, H.: A projection method for generalized eigenvalue problems using
numerical integration. Journal of computational and applied mathematics 159(1), 119-128
(2003)

Sakurai, T., Sugiura, H.: A projection method for generalized eigenvalue problems using
numerical integration. Journal of Computational and Applied Mathematics 159(1), 119-
128 (2003). DOI https://doi.org/10.1016/S0377-0427(03)00565-X. URL http://wuw.
sciencedirect.com/science/article/pii/S037704270300565X. 6th Japan-China Joint
Seminar on Numerical Mathematics; In Search for the Frontier of Computational and Applied
Mathematics toward the 21st Century

Schenk, O., Girtner, K., Fichtner, W.: Efficient sparse LU factorization with left-right
looking strategy on shared memory multiprocessors. BIT Numerical Mathematics 40(1),
158-176 (2000). DOI 10.1023/A:1022326604210. URL https://doi.org/10.1023/A:
1022326604210

Schollwock, U.: The density-matrix renormalization group. Rev. Mod. Phys. 77, 259-315
(2005)

SCOTCH: Static mapping, graph, mesh and hypergraph partitioning, and parallel and se-
quential sparse matrix ordering package. URL http://www.labri.fr/perso/pelegrin/
scotch/

Shahzad, F.: Checkpoint/Restart and Automatic Fault Tolerance(CRAFT) library. https:
//bitbucket.org/essex/craft. Accessed: 2017-07-27

Shahzad, F,, Thies, J., Kreutzer, M., Zeiser, T., Hager, G., Wellein, G.: CRAFT: A library for
easier Application-Level Checkpoint/Restart and Automatic Fault Tolerance. IEEE Transac-
tions on Parallel and Distributed Systems 30(3), 501-514 (2019). DOI 10.1109/TPDS.2018.
2866794

Shahzad, F,, Thies, J., Kreutzer, M., Zeiser, T., Hager, G., Wellein, G.: CRAFT: A library for
easier application-level checkpoint/restart and automatic fault tolerance. IEEE Transactions
on Parallel & Distributed Systems 30(03), 501-514 (2019)

Song, W.: Matrix-based techniques for (flow-)transition studies. Ph.D. thesis, University of
Groningen (2019). URL https://elib.d1lr.de/125176/

Song, W., Wubs, EW., Thies, J., Baars, S.: Numerical bifurcation analysis of a 3D Turing-type
reaction-diffusion model. Communications in Nonlinear Science and Numerical Simulation
(accepted) (2018)

Tang, PT.P,, Polizzi, E.: FEAST as a subspace iteration eigensolver accelerated by approxi-
mate spectral projection. SIAM Journal on Matrix Analysis and Applications 35(2), 354-390
(2014). DOI 10.1137/13090866X. URL https://doi.org/10.1137/13090866X

http://dx.doi.org/10.1016/j.jcp.2016.08.027
http://dx.doi.org/10.1016/j.jcp.2016.08.027
https://link.aps.org/doi/10.1103/PhysRevB.79.115112
https://link.aps.org/doi/10.1103/PhysRevB.79.115112
http://dx.doi.org/10.1137/140976017
https://doi.org/10.1007/978-981-13-1924-2_3
http://www.sciencedirect.com/science/article/pii/S037704270300565X
http://www.sciencedirect.com/science/article/pii/S037704270300565X
https://doi.org/10.1023/A:1022326604210
https://doi.org/10.1023/A:1022326604210
http://www.labri.fr/perso/pelegrin/scotch/
http://www.labri.fr/perso/pelegrin/scotch/
https://bitbucket.org/essex/craft
https://bitbucket.org/essex/craft
https://elib.dlr.de/125176/
https://doi.org/10.1137/13090866X

44

80.

81.

82.

83.

84.

85.

86.

87.

Wellein et al.

Thies, J., Galgon, M., Shahzad, F., Alvermann, A., Kreutzer, M., Pieper, A., Rohrig-Zollner,
M., Basermann, A., Fehske, H., Hager, G., Lang, B., Wellein, G.: Towards an exascale enabled
sparse solver repository (2016). URL https://elib.dlr.de/100211/

Thies, J., Rohrig-Zollner, M., Overmars, N., Basermann, A., Ernst, D., Hager, G., Wellein, G.:
PHIST: a pipelined, hybrid-parallel iterative solver toolkit. ACM Transactions on Mathemat-
ical Software (2019). URL https://elib.dlr.de/123323/. Submitted.

ViennaCL - the Vienna computing library. URL http://viennacl.sourceforge.net/doc/
index.html

Van der Vorst, H.A.: Iterative Krylov methods for large linear systems, vol. 13. Cambridge
University Press (2003)

Weille, A., Wellein, G., Alvermann, A., Fehske, H.: The kernel polynomial method. Rev.
Mod. Phys. 78, 275-306 (2006). DOI 10.1103/RevModPhys.78.275. URL https://1link.
aps.org/doi/10.1103/RevModPhys.78.275

Wouters, M., Vanroose, W.: Automatic exploration techniques for the numerical bifurcation
study of the ginzburg-landau equation (2019). Submitted to SIAM J. Dynamical Systems
Yokota, S., Sakurai, T.: A projection method for nonlinear eigenvalue problems using contour
integrals. JSIAM Letters 5, 41-44 (2013). DOI 10.14495/jsiaml.5.41

Zoltan: Parallel partitioning, load balancing and data-management services. URL fhttp://
www.cs.sandia.gov/zoltan/Zoltan.html

https://elib.dlr.de/100211/
https://elib.dlr.de/123323/
http://viennacl.sourceforge.net/doc/index.html
http://viennacl.sourceforge.net/doc/index.html
https://link.aps.org/doi/10.1103/RevModPhys.78.275
https://link.aps.org/doi/10.1103/RevModPhys.78.275
http://www.cs.sandia.gov/zoltan/Zoltan.html
http://www.cs.sandia.gov/zoltan/Zoltan.html

	Equipping Sparse Solvers For Exascale
	Christie L. Alappat, Andreas Alvermann, Achim Basermann, Holger Fehske, Yasunori Futamura, Martin Galgon, Georg Hager, Sarah Huber, Akira Imakura, Masatoshi Kawai, Moritz Kreutzer, Bruno Lang, Kengo Nakajima, Melven Röhrig-Zöllner, Tetsuya Sakurai, Faisal Shahzad, Jonas Thies, and Gerhard Wellein
	Introduction
	Summary of the ESSEX-I software structure
	Algorithmic Developments
	Preconditioners (ppOpen-SOL)
	The BEAST framework for interior definite generalized eigenproblems
	Further progress on contour integral-based eigensolvers
	Recursive Algebraic Coloring Engine (RACE)

	Hardware Efficiency and Scalability
	Tall & skinny matrix-matrix multiplication (TSMM) on GPGPUs
	BEAST performance and scalability on modern hardware

	Scalable and Sustainable Software
	PHIST and the Block-ILU
	BEAST
	CRAFT
	CRAFT Benchmark Application
	ScaMaC

	Application Results
	Eigensolvers in quantum physics: Graphene, topological insulators, and beyond
	New applications in nonlinear dynamical systems

	International Collaborations
	References
	References

