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Abstract We first briefly report on the status and recent achievements of
the ELPA-AEO (Eigenvalue Solvers for Petaflop Applications – Algorithmic
Extensions and Optimizations) and ESSEX II (Equipping Sparse Solvers for
Exascale) projects. In both collaboratory efforts, scientists from the applica-
tion areas, mathematicians, and computer scientists work together to develop
and make available efficient highly parallel methods for the solution of eigen-
value problems. Then we focus on a topic addressed in both projects, the use
of mixed precision computations to enhance efficiency. We give a more de-
tailed description of our approaches for benefiting from either lower or higher
precision in three selected contexts and of the results thus obtained.

Keywords ELPA-AEO · ESSEX · eigensolver · parallel · mixed precision

Mathematics Subject Classification (2000) 65F15 · 65F25 · 65Y05 ·
65Y99

1 Introduction

Eigenvalue computations are at the core of simulations in various application
areas, including quantum physics and electronic structure computations. Being
able to best utilize the capabilities of current and emerging high-end comput-
ing systems is essential for further improving such simulations with respect to
space/time resolution or by including additional effects in the models. Given
these needs, the ELPA-AEO and ESSEX-II projects contribute to the devel-
opment and implementation of efficient highly parallel methods for eigenvalue
problems, in different contexts.

Both projects are aimed at adding new features (concerning, e.g., per-
formance and resilience) to previously developed methods and at providing
additional functionality with new methods. Building on the results of the first
ESSEX funding phase [14,34], ESSEX-II again focuses on iterative methods
for very large eigenproblems arising, e.g., in quantum physics. ELPA-AEO’s
main application area is electronic structure computation, and for these mod-
erately sized eigenproblems direct methods are often superior. Such methods
are available in the widely used ELPA library [19], which had originated in
an earlier project [2] and is being improved further and extended with ELPA-
AEO.

In Sections 2 and 3 we briefly report on the current state and on recent
achievement in the two projects, with a focus on aspects that may be of par-
ticular interest to prospective users of the software or the underlying methods.
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In Section 4 we turn to computations involving different precisions. Looking at
three examples from the two projects we describe how lower or higher precision
is used to reduce the computing time.

2 The ELPA-AEO project

In the ELPA-AEO project, chemists, mathematicians and computer scientists
from the Max Planck Computing and Data Facility in Garching, the Fritz
Haber Institute of the Max Planck Society in Berlin, the Technical University
of Munich, and the University of Wuppertal collaborate to provide highly
scalable methods for solving moderately-sized (n . 106) Hermitian eigenvalue
problems. Such problems arise, e.g., in electronic structure computations, and
during the earlier ELPA project, efficient direct solvers for them had been
developed and implemented in the ELPA library [19].

This library is widely used (see https://elpa.mpcdf.mpg.de/about for
a description and pointers to the software), and it has been maintained and
further improved continually since the first release in 2011. The ELPA library
contains optimized routines for the steps in the direct solution of general-
ized Hermitian positive eigenproblems AX = BXΛ, that is, (i) the Cholesky

decomposition B = UHU , (ii) the transformation A 7→ Ã = U−HAU−1 to

a standard eigenproblem ÃX = X̃Λ, (iii) the reduction of Ã to tridiago-
nal form, either in one step or via an intermediate banded matrix, (iv) a
divide-and-conquer tridiagonal eigensolver, and (v) back-transformations for
the eigenvectors corresponding to steps (iii) and (ii). A typical application
scenario from electronic structure computations (“SCF cycle”) requires a se-
quence of a few dozens of eigenproblems A(k)X = BXΛ to be solved, where
the matrix B remains unchanged; see Section 4.3 for more details. ELPA is
particularly efficient in this situation by explicitly building U−1 for steps (ii)
and (v).

ELPA-AEO is aimed at further improving the performance of computations
that are already covered by ELPA routines and at providing new functionality.
In the remainder of this section we highlight a few recent achievements that
may be of particular interest to current and prospective users of the library.

An alternative approach for the transformation (ii) has been developed
[18], which is based on Cannon’s algorithm [5]. The transformation is done
with two matrix products: multiplication 1 computes the upper triangle Mu

of M := A · U−1, then Mu is transposed to obtain the lower triangle Ml of
MH = U−HA, and finally multiplication 2 computes the lower triangle of
Ml · U−1 = Ã. Both routines assume that one dimension of the process grid
is a multiple of the other. They make use of the triangular structure of their
arguments to save on computation and communication. The timing data in
Figure 1 show that the new implementations are highly competitive.

Recent ELPA releases provide extended facilities for performance tuning.
The computational routines have an argument that can be used to guide the
routines in selecting algorithmic paths (if there are different ways to proceed)

https://elpa.mpcdf.mpg.de/about
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Fig. 1 Timings for the two multiplications in the transformation A 7→ Ã with routines from
ScaLAPACK, current ELPA routines, and the new implementations. The runs were made
on the HYDRA system at MPCDF in Garching with 20 processes per node (two 10-core
Intel Ivy bridge processors running at 2.8 GHz) and double precision real matrices of size
n = 30, 000. Process grids had aspect ratios 1 : 1 or 1 : 2; e.g., a 10× 20 grid was set up for
p = 200. With p = 3200, the new codes run at ≈ 40% of the nodes’ peak performance.

autotune handle = elpa autotune setup( handle, ELPA AUTOTUNE FAST,

ELPA AUTOTUNE DOMAIN REAL, &error ) ;

for ( i = 0 ; i < 20 ; i++ ) {
unfinished = elpa autotune step( handle, autotuning handle ) ;

if ( unfinished == 0 )

printf( "ELPA autotuning finished in the %d th SCF step\n", i ) ;

/* Solve EV problem */

elpa eigenvectors( handle, a, ev, z, &error ) ;

}
elpa autotune best set( handle, autotune handle ) ;

elpa autotune deallocate( autotune handle ) ;

Fig. 2 Using ELPA’s autotuning facility to adjust the algorithmic parameters during the
solution of (at most) twenty eigenvalue problems in an SCF cycle, and saving them for later
use.

and algorithmic parameters (such as block sizes) and to receive performance
data from their execution. An easy-to-use autotuning facility allows setting
such parameters in an automated way by screening the parameter space; see
the code fragment in Figure 2 for an example. Note that the parameter set
obtained with the coarse probing induced by ELPA AUTOTUNE FAST might
be improved later on.

In earlier releases, ELPA could be configured for single or double precision
computations, but due to the naming conventions only one of the two versions
could be linked to a calling program. Now, both precisions are accessible from
one library, and mixing them may speed up some computations; see Section 4.3
for an example.

New functionality for addressing banded generalized eigenvalue problems
will be added. An efficient algorithm for the transformation to a banded stan-
dard eigenvalue problem has been developed [17], and its parallelization is
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currently under way. This will complement the functions for solving banded
standard eigenvalue problems that are already included in ELPA.

3 The ESSEX-II project

The ESSEX-II project is a collaborative effort of physicists, mathematicians
and computer scientists from the Universities of Erlangen-Nuremberg, Greifs-
wald, Tokyo, Tsukuba, and Wuppertal and from the German Aerospace Center
in Cologne. It is aimed at developing exascale-enabled solvers for selected types
of very large (n� 106) eigenproblems arising, e.g., in quantum physics; see the
project’s homepage at https://blogs.fau.de/essex/ for more information,
including pointers to publications and software.

ESSEX-II builds on results from the first ESSEX funding phase, in partic-
ular the Exascale enabled Sparse Solver Repository (ESSR), which provides a
(block) Jacobi–Davidson method, the BEAST subspace iteration-based frame-
work, and the Kernel Polynomial Method (KPM) and Chebyshev time prop-
agation for determining few extremal eigenvalues, a bunch of interior eigen-
values, and information about the whole spectrum and dynamic properties,
respectively. The BEAST framework uses subspace iteration with Rayleigh–
Ritz extraction of approximate eigenpairs. It provides three different basic
methods for constructing the subspace and heuristic strategies for running
them; more details will be given in Section 4.1.

Based on the versatile SELL-C-σ format for sparse matrices [13], the
General, Hybrid, and Optimized Sparse Toolkit (GHOST) [15] contains opti-
mized kernels for often-used operations such as sparse matrix times (multiple)
vector products (optionally fused with other computations) and operations
with block vectors, as well as a task manager, for CPUs, Intel Xeon Phi MICs
and Nvidia GPUs and combinations of these. The Pipelined Hybrid-parallel
Iterative Solver Toolkit (PHIST) [34] provides the eigensolver algorithms with
interfaces to GHOST and other “computational cores,” together with higher-
level functionality, such as orthogonalization and linear solvers.

With ESSEX-II, the interoperability of these ESSR components will be
further improved to yield a mature library, which will also have an extended
range of applicability, including non-Hermitian and nonlinear eigenproblems.
Again we highlight only a few recent achievements.

The Scalable Matrix Collection (ScaMaC) provides routines that simplify
the generation of test matrices. The matrices can be chosen from several physi-
cal models, e.g., boson or fermion chains, and parameters allow adjusting sizes
and physically motivated properties of the matrices. With 32 processes, a dis-
tributed size 2.36G matrix for a Hubbard model with 18 sites and 9 fermions
can be set up in less than 10 minutes.

The block Jacobi–Davidson solver has been extended to non-Hermitian
and generalized eigenproblems. It can be run with arbitrary preconditioners,
e.g., the AMG preconditioner ML [31], and employs a robust and fast block

https://blogs.fau.de/essex/
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// BEAST init (omitted)

Checkpoint beast checkpoint( "BEAST", comm ) ;

beast checkpoint->add( "eigenvectors", &X ) ;

beast checkpoint->add( "eigenvalues", &e ) ;

... // Some more

beast checkpoint->add( "control variables", &state ) ;

beast checkpoint->commit() ;

beast checkpoint->restartIfNeeded( NULL ) ;

// BEAST iterations

while ( !state.abort condition ) {
// Compute projector, etc. (omitted)

...

beast checkpoint->update() ;

beast checkpoint->write() ;

}

Fig. 3 Using the CRAFT library to checkpoint the current eigenvector approximations X

and other quantities in every iteration of the main loop.

orthogonalization scheme that can make use of higher-precision computations;
see Section 4.2 for more details.

The BEAST framework has been extended to seamlessly integrate three dif-
ferent approaches for spectral filtering in subspace iteration methods (polyno-
mial filters, rational filters based on plain contour integration, and a moment-
based technique) and to make use of their respective advantages with adaptive
strategies. The BEAST framework also benefits from using different precisions;
see Section 4.1.

At various places, measures for improving resilience have been included,
based on verifying known properties of computed quantities and on checksums,
combined with checkpoint–restart. To simplify incorporating the latter into nu-
merical algorithms, the Checkpoint–Restart and Automatic Fault Tolerance
(CRAFT) library has been developed [30]. Figure 3 illustrates its use within
the BEAST framework. CRAFT can handle the GHOST and PHIST data
types, as well as user-defined types. Checkpoints may be nested to accom-
modate, e.g., low-frequency high-volume together with high-frequency low-
volume checkpointing in multilevel numerical algorithms, and the checkpoints
can be written asynchronously to reduce overhead. By relying on the Scalable
Checkpoint/Restart (SCR) and User-Level Failure Mitigation (ULFM-) MPI
libraries, CRAFT also provides support for fast node-level checkpointing and
for handling node failures.

4 Benefits of using a different precision

Doing computations in lower precision is attractive from a performance point
of view because it reduces memory traffic in memory-bound code and, in
compute-bound situations, allows more operations per second, due to vector
instructions manipulating more elements at a time. However, the desired ac-
curacy often cannot be reached in single precision and then only a part of the
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computations can be done in lower precision, or a correction is needed; cf., e.g.,
[3] for the latter. In Subsection 4.1 we describe an approach for reducing over-
all runtimes of the BEAST framework by using lower-precision computations
for early iterations.

Higher precision, on the other hand, is often a means to improve robustness.
It is less known that higher precision can also be beneficial w.r.t. runtime. This
is demonstrated in Subsection 4.2 in the context of orthogonalization.

In Section 4.3 we come back to using lower precision, from the perspective
of an important application area: self-consistent field (SCF) cycles in electronic
structure computations. Each iteration of such a cycle requires the solution of
a generalized eigenproblem (GEP). After briefly introducing the context, we
discuss how ELPA-AEO’s features can be used to steer the precision from the
application code, targeting either the entire solution of a GEP or particular
steps within its solution.

4.1 Changing precision in subspace iteration-based eigensolvers

The BEAST framework [9,34] is aimed at finding those eigenpairs (λ, x) of
a generalized interior eigenproblem Ax = Bxλ (A Hermitian, B Hermitian
positive definite) with λ in a given search interval Iλ = [λ, λ], in particular
for interior eigenvalues. It is based on subspace iteration with spectral filtering
and Rayleigh–Ritz extraction, that is, a subspace U containing an approximate
basis for the desired eigenvectors is constructed from some initial vectors Y ,
then a Rayleigh–Ritz step is used to obtain the approximate eigenpairs. If the
desired residual threshold is not yet reached, we iterate, using the approximate
eigenvectors in our choice of Y for the following iteration; cf. also Figure 5
below. The main distinguishing factor of the variants BEAST-P/-C/-M in our
framework is the construction of the subspace U .

BEAST-P, which is only applicable for standard eigenproblems, imple-
ments a polynomial filter [22,26], using matrix–(block) vector products to
apply a polynomial in A to Y ,

U =

N∑
j=0

ωjA
jY .

In both BEAST-C and BEAST-M, the filter is applied via quadrature
approximations of contour integrals of the form

r(B−1A) ≈ 1

2πi

∫
Γ

zk(zB −A)−1B dz,

where Γ is a contour in the complex plane enclosing the sought eigenvalues
and no others. BEAST-C follows Polizzi’s FEAST algorithm [23] in computing

U =

N∑
j=1

wj(zjB −A)−1BY



8

with suitable nodes zj and weights wj . This requires N linear solves for each
iteration of the eigensolver, with an n×m block vector of right hand sides Y .
BEAST-M realizes a specific Sakurai–Sugiura method [27], Sakurai–Sugiura
Rayleigh–Ritz [28]. Here, the subspace is constructed as

U = [U0, ..., Us−1] , where Uk =

N∑
j=1

wjz
k
j (zjB −A)−1BY.

Thus, again N linear solves must be performed as in BEAST-C, but since
the overall subspace is computed as a combination of their solution, Y needs
only (1/s)th the desired number of columns of U , which can reduce the cost
of the linear solves. It should be noted that a traditional Sakurai–Sugiura
Rayleigh–Ritz implementation requires very few, or only one iteration, with a
large overall subspace size. However, we consider it here within the context of
a constrained subspace size, making it a truly iterative method.

We first consider the effect of starting with single precision and switching to
double precision in later iterations. Since BEAST is designed to behave itera-
tively, we expect that this effect should be limited. Figure 4 shows BEAST-P’s
progress (smallest residual of the current approximations in each iteration) in
solving a standard eigenproblem AX = XΛ for a size 3200 topological in-
sulator matrix A from the ESSEX repository [1] and Iλ = [−0.5, 0.5], which
contains 36 eigenpairs. We see that the residuals for single precision data and
computations are very close to those obtained with double precision, until we
reach the single precision barrier. Continuing in single precision leads to stag-
nation. By contrast, if we switch to double precision data and computations
sufficiently before the barrier, convergence proceeds as if the entire run was in
double precision. Even a later switch need not have dramatic effects; we see
that convergence, although stalled temporarily by the single precision barrier,
proceeds at the same rate and possibly even slightly faster when switched two
and four iterations “too late.” In the case of 10 iterations in single precision
(two past the ideal of 8), the overall residual reached after 15 total iterations
is again close to that of the full double and ideal switch computations.

A switching strategy based on this observation is shown in Figure 5. In
Figure 6 we report results for using this approach to solve the problem AX =
ΛX for a size 16M graphene matrix from the ESSEX repository and Iλ =
[−0.0025, 0.0025]. The computation was done on the Emmy cluster at the
University of Erlangen-Nuremberg, using 32 nodes, each with two Xeon 2660v2
chips. All methods computed an identical number of 318 eigenpairs in Iλ to a
tolerance of 10−10. BEAST-P exhibits a remarkable similarity in convergence
rates between single and double precision before the switch threshold, and the
mixed precision run was roughly 1.2 times faster than using double precision
throughout. In BEAST-C the rates are again similar; due to a few unconverged
eigenpairs, the double precision computation required an additional iteration
of the eigensolver for this problem, enabling a higher speedup 1.4 for the mixed
precision version. In BEAST-M, we observe some stagnation before the switch
threshold, and an additional iteration was required in the mixed precision run.
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Fig. 4 Smallest residual mini ‖Axi − λixi‖ (left picture) and geometric mean (
∏
i ‖Axi −

λixi‖ )1/k of the residuals (right picture) over BEAST-P iterations (with polynomial degree
50) for computations done completely in double precision, completely in single precision, and
with switching from single to double precision after iterations 12, 10, and 8. The horizontal
line indicates the single precision machine epsilon. The minimum and mean, resp., are taken
over those k approximate eigenpairs that are classified as lying within the search interval.

Choose desired subspace size m (> number of evals in Iλ) and initial vectors Y
while not converged do

Construct subspace U ← Y with BEAST-* scheme
Resize subspace based on rank(U)
Solve reduced eigenproblem AUW = BUWΛ, where AU = U∗AU , BU = U∗BU
X := UW
Y := BX (BEAST-P/-C) or Y := BXR (BEAST-M, with a random matrix R)
If single precision barrier has been reached, switch to double precision

end

Fig. 5 The mixed-precision BEAST framework. Computations are started in single preci-
sion and may be continued in double precision.

In this case, the mixed precision run was slower than pure double precision,
with a “speedup” of 0.9. Overall, the reduction in time from early iterations
performed in single precision shows most clearly for BEAST-P. We note that
the actual speed-up observed between single and double precision depends
on both the hardware and software used; higher optimization of vectorized
instructions or the use of accelerators such as GPUs could produce a more
dramatic time difference.

The results indicate that initial iterations in single precision may have a
limited effect on the overall convergence of the eigensolver if an appropriate
switching point to double precision is chosen, thus allowing for a reduction
in cost without sacrificing accuracy. We plan to combine this approach with
relaxed stopping criteria for solving the linear systems in BEAST-C and -M
iteratively; cf. also [9,10] for related work.

4.2 Using higher precision for robust and fast orthogonalization

In contrast to the standard Jacobi–Davidson method, which determines the
sought eigenpairs one-by-one, the block Jacobi–Davison method in ESSEX
[24] computes them by groups. Here we will consider only the real standard
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Fig. 6 Smallest residual over BEAST iterations for runs done completely in double precision
(solid lines) and for mixed precision runs (dashed lines; different markers for iterations done
in single and double precision, respectively), with algorithmic parameters set as follows.
Size of U : 1.5× the estimated number of eigenvalues in the interval; polynomial degree of
BEAST-P: 10,000; 4 Gauss-Legendre integration points for BEAST-C and 8 for BEAST-M,
which is more sensitive to a low number of nodes; STRUMPACK direct solver [25] for the
linear systems in BEAST-C and -M; threshold for the switch from single to double precision:
10−5 for BEAST-P and -C, and 10−4 for BEAST-M to prevent excessive stagnation.

eigenvalue problem Avi = viλi. Then one iteration contains the following two
major steps:

1. Given nb current approximations λ̃i and ṽi, i = 1, . . . , nb, and a set of
previously converged Schur vectors W = (w1, . . . , wk) (k ≥ 0), use some
steps of a (blocked) iterative linear solver for the correction equation

(I − W̃W̃T )(A− λ̃iI)(I − W̃W̃T )xi = −ri, i = 1, . . . , nb,

where ri = Aṽi− ṽiλ̃i are the current residuals and W̃ = (W | ṽ1, . . . , ṽnb
).

2. Obtain new directions y1, . . . , ynb
by orthogonalizing the xi against W and

among themselves. (The yi are then used to update the ṽi.)

The block method typically requires more operations than the non-blocked
one and therefore has previously not been advocated, but in [24] it has been
shown that this drawback can be more than outweighed by allowing the use
of kernels that can be implemented to make best use of the capabilities of
modern processors (in particular, sparse matrix times multiple vectors), such
that the block method tends to run faster. In addition, it is more robust in
the presence of multiple or tightly clustered eigenvalues.

In the following we focus on the orthogonalization in step 2. It is well
known that if one first orthogonalizes the xi against W (“phase I ”) and then
among themselves (“phase II ”), the second phase can spoil the results of the
first one; this also holds if we reverse the order of the phases. By contrast, a
robust algorithm is obtained by iterating this process, alternating between the
two phases and using a rank-revealing technique in phase II; see [12,33] for a
thorough discussion.

We follow this approach, using a plain projection Ỹ = (I −WWT )X for
phase I and SVQB [32] on Ỹ for phase II. We prefer SVQB over TSQR [8]
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because the bulk of computation may be done in a highly performant matrix–
matrix multiplication for building the Gram matrix M = Ỹ T Ỹ . This would
also be true for CholQR [32], but SVQB is superior in the following sense.

Both methods orthogonalize Ỹ by determining a suitable matrix Z ∈
Rnb×nb such that ZTMZ = I, and setting Y = Ỹ Z; this yields Y TY = I. For
SVQB we take Z = UΛ−1/2, where M = UΛUT is an eigendecomposition of
M , whereas a (possibly pivoted, partial) Cholesky decomposition M = RTR
is used for setting Z = R−1 in CholQR. A sufficient condition for minimizing
the amplification of rounding errors in the final multiplication Ỹ Z, is that Z
should be as close as possible to the identity matrix [35]. So we have to solve
the optimization problem

min
Z∈Rnb×nb , ZTMZ=I

‖Z − I‖.

For the Frobenius norm, this is a special case of the orthogonal Procrustes
problem analyzed by Schönemann in [29], as it can be transformed to the
following formulation:

min
Ẑ∈Rnb×nb , ẐT Ẑ=I

‖M̄−1/2Ẑ − I‖F .

As shown in [29], a solution can be constructed as Ẑ = UUT with the eigen-
decomposition M1/2 = UD1/2UT (in [29] a more general case is considered
exploiting a singular value decomposition). So the choice Z = M−1/2Ẑ =
UD−1/2, that is, the SVQB algorithm, is optimal in the sense discussed above.
(For simplicity of the presentation we have assumed M to be full-rank, thus
symmetric positive definite. The argumentation also can be extended to the
rank-deficient case.)

Our aim is to obtain a robust and fast overall orthogonalization method
with fewer iterations by using extended precision computations; cf. [36,37] for
related ideas in the context of CholQR and communication-avoiding GMRES.

In contrast to [36,37], we use extended precision throughout the orthog-
onalization, including the orthogonalization against W and the computation
and decomposition of the Gram matrix. Our own kernels are based on the tech-
niques described in [20] for working with numbers represented by two doubles
(DD). Some of the kernels take standard double precision data and return DD
results, others also take DD data as inputs. They make use of AVX2, Intel’s
advanced vector extensions, with FMA (fused multiply–add) operations; see
[20, Chapter 5]. As proposed there, divisions and square roots are computed
using the Newton–Raphson method.

Figure 7 shows the results of a single two-phase orthogonalization, with-
out iteration, for synthetic test matrices with varying condition. If X is ill-
conditioned then TSQR does a much better job on X than SVQB, but this
does not carry over to orthogonality against W , and using DD kernels can
improve both orthogonalities by at least two orders of magnitude.

On modern architectures, even the performance of matrix–matrix multi-
plications such as Ṽ T Ṽ is memory-bound if the matrix Ṽ ∈ Rn×nb is only
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Fig. 7 Accuracy after one iteration (phase I and phase II) for synthetic test matrices
W ∈ Rn×k, X ∈ Rn×nb , where n = 1000, k = 20, and nb = 4.

very few columns wide. Then the additional arithmetic operations required in
the DD kernels come almost for free, and operations on small nb × nb matri-
ces are cost negligible, even in extended precision. Figure 8 compares timings
for the overall orthogonalization with a straight-forward implementation, one
that uses kernel fusion (combining several basic operations to further reduce
memory accesses; not discussed here), and one with fused DD kernels. It re-
veals that using DD routines can even reduce overall time because the higher
accuracy achieved in each iteration can lead to a lower number of iterations
to reach convergence.

This technique can be useful for any algorithm that requires orthogonal-
izing a set X of vectors with respect to themselves and to another set W of
(already orthonormal) vectors. It also extends to B-inner products, which is
important, e.g., when solving generalized eigenvalue problems.

4.3 Mixed precision in SCF cycles with ELPA-AEO

The solution of the quantum-mechanical electronic-structure problem is at the
basis of studies in computational chemistry, solid state physics, and materials
science. In density-functional theory (DFT), the most wide-spread electronic-
structure formalism, this implies finding the electronic density n(r) that min-
imizes (E0 = minE[n(r)]) the convex total-energy functional E[n(r)] under
the constraint that the number of electrons, N =

∫
drn(r), is conserved.

Here, the set of 3M nuclear coordinates {R} enters E[n(r)] parametrically.
Formally, this variational problem requires to find the stationary solution of
the eigenvalue problem (EVP)

H[n(r)]Ψ(r) = εΨ(r) with n(r) =

N∑
s=1

|Ψs(r)|2 (1)
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in Hilbert space by iteratively updating n(r), which depends on the N eigen-
states Ψs with the lowest eigenvalues εs. This so called self-consistent field
(SCF) cycle runs until “self-consistency” is achieved, i.e., until the mean in-
teraction field contained in H[nk(r)] and/or other quantities (see below) do
not change substantially between iterations anymore. In each step of the SCF
cycle, the integro-differential equation (1) has to be solved. In practice, this is
done by algebraizing Eq. (1) via a basis set expansion Ψs =

∑
i xsiϕi(r) of the

so called orbitals in terms of appropriately chosen basis functions ϕi(r), e.g.,
plane waves, localized functions, etc. By this means, one obtains a generalized
EVP

A[n(r)]x = λBx ,

in which the Hamiltonian A and the overlap matrix B are defined as

Aij [n(r)] =

∫
drϕ∗i (r)H[n(r)]ϕj(r) and Bij =

∫
drϕ∗i (r)ϕj(r) . (2)

As becomes clear from Eq. (2), the size of the EVP is thus determined by the
number K of basis functions ϕi(r) employed in the calculation. For efficient,
atom-centered basis functions the ratio N/K of required eigenstates to matrix
dimension typically ranges between 10 and 50%, rendering a direct solver
competitive.

One SCF cycle yields the total energy E0({R}) for just one set of nu-
clear coordinates {R}. Studying molecules and materials requires the explo-
ration of the high dimensional potential-energy surface (PES) which is given
by E0({R}) as a function of {R}, e.g., via molecular dynamics (MD), statis-
tical (e.g. Monte Carlo) sampling, or minimization and saddle point search
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algorithms. Accordingly, a typical computational study requires thousands if
not millions of SCF cycles (about 10–100 SCF steps per cycle) to be performed
in a single simulation. This large number of SCF steps makes it mandatory
to investigate strategies to reduce the computational effort. Since only the fi-
nal result of each converged SCF cycle is of physical relevance at all, the SCF
procedure can be accelerated by using single precision (SP) routines instead of
double precision (DP) ones in the appropriate eigensolver steps (cf. Section 2),
as long as the final converged result is not altered up to the precision mandated
by the problem at hand. The eigensolver steps discussed in this section are the
Cholesky decomposition (i), the transformation to the standard eigenproblem
(ii), and its standard diagonalization, which combines tridiagonalization (iii)
and the tridiagonal eigensolver (iv), as defined in Section 2.

To showcase the importance of the readily available SP routines in ELPA-
AEO, we have performed DFT calculations with the all-electron, numeric
atomic orbitals based code FHI-aims [4], which supports both ELPA and
ELPA-AEO through the ELSI package [38]. For this purpose, we have run
benchmark calculations for zirconia (ZrO2) in its tetragonal polymorph, a wide
band-gap insulator often employed as thermal insulator in aeronautic appli-
cations [6,7]. Supercells containing between M = 6 and 768 atoms (N = 112
and 14,336 electrons) were investigated using the PBEsol exchange-correlation
functional, “light” defaults for the numerical settings, and chemical species-
specific “Tier 1” defaults for the basis functions ϕi. Accordingly, this translates
to basis sets yielding matrix dimensions from K = 1,312 to 70,848 for the in-
vestigated systems. The finite k-point grid required to sample reciprocal space
to model such extended materials using periodic boundary conditions was cho-
sen in such a way that the k-point density is roughly constant (between 128
and 216 k-points in the respective primitive Brillouin zone). As an example,
Figure 9 shows the total time for one SCF step and the total time spent in
solving the EVP with SP and DP as function of the system size. Here, SP is
only used in the diagonalization (steps (iii) and (iv) introduced in Section 2).
For larger system sizes (more than 104 basis functions), the computational
time spent in the calculation of A[n(r)], which typically exhibits linear scaling
with respect to N in FHI-aims [11], becomes increasingly negligible compared
to the EVP, which starts to dominate the computational time due to its cubic
scaling. Switching from DP to SP thus allows for computational savings in the
solution of the EVP on the order of 30–50%. Even for medium system sizes
(M = 96 with K = 2,624 basis functions) that are routinely addressed in DFT
calculations [7] this already translates into savings in total computational time
of around 10%, while savings of more than 20% are observed for larger systems
(up to over 40% in Figure 12).

However, SP routines cannot be exploited during the full SCF cycle: once a
certain accuracy is reached, further SP SCF iterations do no longer approach
convergence. This is demonstrated for ZrO2 in Figure 10. In each SCF step, we
monitor two properties that are typically used for determining the convergence
of such calculations: (I) the change in charge density between two subsequent
steps k and k+1, ∆n =

∫
dr |nk(r)−nk+1(r)|, and (II) the change in the sum
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and 14,336 electrons, respectively, using the settings of Figure 9).

of the N lowest eigenvalues, ∆ε =
∑N
s=1 ε

(k)
s − ε(k+1)

s . For M = 162 atoms,
we observe that ∆n stalls at approximately 2.5 · 10−4 electrons after the 10th
SCF iteration for the calculation using SP. Similarly, ∆ε stalls at a value of
5 · 10−2 eV, showing a less regular behavior, both in SP and DP. This can be
traced back to the fact that the total-energy functional is not variational with
respect to the eigenvalues. As also shown in Figure 10 for M = 768 atoms
(N = 14,336 electrons), the observed thresholds at which using SP no longer
guarantees approaching convergence is, however, system and size dependent,
since the respective quantities (energy, density, sum of eigenvalues, etc.) are
extensive with system size, i.e., they scale linearly with the number of electrons,
N . For these reasons, convergence criteria in DFT calculations are typically
not chosen with respect to extensive quantities as the total energy, but with
respect to intensive quantities, such as the total energy per atom. Hence the
fraction of iterations for which SP routines can be used (> 30%) are roughly
independent of the system size, given that both the target quantity and its
change, e.g., n(r) and ∆n(r), are extensive with system size.
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In general, not only the central steps (iii) and (iv) of solving the EVP (the
diagonalization comprising the reduction to tridiagonal form and the tridi-
agonal eigensolver; cf. Section 2), but also the Cholesky decomposition (i)
and the transformation to the standard eigenproblem (ii) offer the flexibility
to choose between SP and DP. Even though the overlap-matrix B remains
constant during an SCF cycle for an atom-centered basis, the test calcula-
tions on an AB-stacked graphite system (M = 108 atoms, PBE exchange-
correlation functional, “tight” numerical defaults, “Tier 2” default basis set,
K = 23,682 basis functions, N = 648 electrons) include the Cholesky decom-
position in every iteration step in order to assess the impact of SP versus DP
in step (i). Figure 11 illustrates that SP in (i) and (ii) does not noticeably
change the convergence behavior of the extensive properties (change of to-
tal energy ∆E[n(r)] = E[n(k)(r)]− E[n(k+1)(r)], eigenvalues ∆ε, and density
∆n) during one SCF cycle and hence, full convergence is achieved in contrast
to SP in the diagonalization (iii) and (iv). This is confirmed in the bottom
right picture in Figure 11, where the forces on each atom, i.e., the gradients
FI = −∇RI

E0({R}) and their deviation from the full double precision values
|FDPI −FSPI | are shown. The force per atom, an intensive quantity, is typically
monitored and required to reach a certain accuracy in calculations targeted
at exploring E0({R}). The bottom right plot in Figure 11 confirms that SP
in the Cholesky decomposition (i) influences the results only marginally; SP
transformation (ii) even yields numerically identical results (not shown on the
logarithmic scale). By contrast, a SP diagonalization results in force deviations
of up to 0.5 meV/Å, which will still be sufficiently small for certain applica-
tions such as prescreening in PES exploration or statistical methods based on
sampling by MD, when interpreting the error noise in the forces as acceptable
thermal noise [16]. For the combination of SP throughout steps (i) to (iv), the
convergence behavior and the force deviations are dominated by the perfor-
mance of the eigensolver steps (iii) and (iv), and the convergence criteria for
neither energy, eigenvalues, nor density are fulfilled. However, as discussed for
Figures 9 and 10, resorting to a diagonalization (iii) and (iv) in SP during
the initial SCF steps is computationally advantageous, but switching to DP is
required in the final steps for full convergence.

Figure 12 shows that the discussed advantages of SP are preserved in mas-
sively parallelized computations. Here, we display calculations for a slab of
silicon carbide, where a layer of graphene is adsorbed on the surface [21]. Com-
pared to the 2013 ELPA code base, which presents a common usage scenario
before the ELPA-AEO project, we observe a speed-up of 1.7 for DP calcula-
tions. Another factor of 1.4 is obtained when switching to SP, which would not
have been possible with earlier releases of the library. The almost ideal strong
scaling with respect to the number of cores is retained in SP calculations.
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5 Concluding remarks

The ESSEX-II and ELPA-AEO projects are collaborative research efforts tar-
geted at developing iterative solvers for very large scale eigenproblems (dimen-
sions� 1M) and direct solvers for smaller-scale eigenproblems (dimensions up
to 1M), and at providing software for these methods. After briefly highlighting
some recent progress in the two projects w.r.t. auto-tuning facilities, resilience,
and added functionality, we have discussed several ways of using mixed preci-
sion for reducing the runtime.

In iterative schemes such as BEAST, single precision may be used in early
iterations. This need not compromise the final accuracy if we switch to double
precision at the right time. Even working in extended precision may speed up
the execution if the extra precision leads to fewer iterations and is not too
expensive, as seen with an iterative orthogonalization scheme for the block
Jacobi–Davison method. Additional finer-grained control of the working pre-
cision, addressing just particular steps of the computations can also be ben-
eficial; this has been demonstrated with electronic structure computations,
where the precision for each step was chosen directly from the calling code.

Our results indicate that the users should be able to adapt the working pre-
cision, as well as algorithmic parameters, to their particular needs, together
with heuristics for automatic selection. Work towards these goals will be con-
tinued in both projects.

Acknowledgements The authors thank the unknown referees for their valuable comments
that helped to improve and clarify the presentation.
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