9 research outputs found

    Crystal structure of pathogenic Staphylococcus aureus lipase complex with the anti-obesity drug orlistat

    Get PDF
    抗肥満薬が黄色ブドウ球菌の病原因子を阻害するメカニズムを解明. 京都大学プレスリリース. 2020-03-31.Staphylococcus aureus lipase (SAL), a triacylglycerol esterase, is an important virulence factor and may be a therapeutic target for infectious diseases. Herein, we determined the 3D structure of native SAL, the mutated S116A inactive form, and the inhibitor complex using the anti-obesity drug orlistat to aid in drug development. The determined crystal structures showed a typical α/β hydrolase motif with a dimeric form. Fatty acids bound near the active site in native SAL and inactive S116A mutant structures. We found that orlistat potently inhibits SAL activity, and it covalently bound to the catalytic Ser116 residue. This is the first report detailing orlistat–lipase binding. It provides structure-based information on the production of potent anti-SAL drugs and lipase inhibitors. These results also indicated that orlistat can be repositioned to treat bacterial diseases

    A Histone-Like Protein of Mycobacteria Possesses Ferritin Superfamily Protein-Like Activity and Protects against DNA Damage by Fenton Reaction

    Get PDF
    Iron is an essential metal for living organisms but its level must be strictly controlled in cells, because ferrous ion induces toxicity by generating highly active reactive oxygen, hydroxyl radicals, through the Fenton reaction. In addition, ferric ion shows low solubility under physiological conditions. To overcome these obstacles living organisms possess Ferritin superfamily proteins that are distributed in all three domains of life: bacteria, archaea, and eukaryotes. These proteins minimize hydroxyl radical formation by ferroxidase activity that converts Fe2+ into Fe3+ and sequesters iron by storing it as a mineral inside a protein cage. In this study, we discovered that mycobacterial DNA-binding protein 1 (MDP1), a histone-like protein, has similar activity to ferritin superfamily proteins. MDP1 prevented the Fenton reaction and protects DNA by the ferroxidase activity. The Km values of the ferroxidase activity by MDP1 of Mycobacterium bovis bacillus Calmette-Guérin (BCG-3007c), Mycobacterium tuberculosis (Rv2986c), and Mycobacterium leprae (ML1683; ML-LBP) were 0.292, 0.252, and 0.129 mM, respectively. Furthermore, one MDP1 molecule directly captured 81.4±19.1 iron atoms, suggesting the role of this protein in iron storage. This study describes for the first time a ferroxidase-iron storage protein outside of the ferritin superfamily proteins and the protective role of this bacterial protein from DNA damage

    Crystal structure of pathogenic Staphylococcus aureus lipase complex with the anti-obesity drug orlistat

    Get PDF
    抗肥満薬が黄色ブドウ球菌の病原因子を阻害するメカニズムを解明. 京都大学プレスリリース. 2020-03-31.Staphylococcus aureus lipase (SAL), a triacylglycerol esterase, is an important virulence factor and may be a therapeutic target for infectious diseases. Herein, we determined the 3D structure of native SAL, the mutated S116A inactive form, and the inhibitor complex using the anti-obesity drug orlistat to aid in drug development. The determined crystal structures showed a typical α/β hydrolase motif with a dimeric form. Fatty acids bound near the active site in native SAL and inactive S116A mutant structures. We found that orlistat potently inhibits SAL activity, and it covalently bound to the catalytic Ser116 residue. This is the first report detailing orlistat–lipase binding. It provides structure-based information on the production of potent anti-SAL drugs and lipase inhibitors. These results also indicated that orlistat can be repositioned to treat bacterial diseases

    Crystallization and preliminary crystallographic studies of the Pasteurella multocida toxin catalytic domain

    No full text
    The C-terminal catalytic domain of P. multocida toxin, which is the virulence factor of the organism in P. multocida, has been expressed, purified and subsequently crystallized using the sitting-drop vapour-diffusion technique

    CD81 extracellular domain 3D structure: insight into the tetraspanin superfamily structural motifs

    No full text
    Human CD81, a known receptor for hepatitis C virus envelope E2 glycoprotein, is a transmembrane protein belonging to the tetraspanin family. The crystal structure of human CD81 large extracellular domain is reported here at 1.6 Å resolution. Each subunit within the homodimeric protein displays a mushroom-like structure, composed of five α-helices arranged in ‘stalk’ and ‘head’ subdomains. Residues known to be involved in virus binding can be mapped onto the head subdomain, providing a basis for the design of antiviral drugs and vaccines. Sequence analysis of 160 tetraspanins indicates that key structural features and the new protein fold observed in the CD81 large extracellular domain are conserved within the family. On these bases, it is proposed that tetraspanins may assemble at the cell surface into homo- and/or hetero-dimers through a conserved hydrophobic interface located in the stalk subdomain, while interacting with other liganding proteins, including hepatitis C virus E2, through the head subdomain. The topology of such interactions provides a rationale for the assembly of the so-called tetraspan-web

    Significance of a histone-like protein with its native structure for the diagnosis of asymptomatic tuberculosis

    Get PDF
    Tuberculosis causes the highest mortality among all single infections. Asymptomatic tuberculosis, afflicting one third of the global human population, is the major source as 5–10% of asymptomatic cases develop active tuberculosis during their lifetime. Thus it is one of important issues to develop diagnostic tools for accurately detecting asymptomatic infection. Mycobacterial DNA-binding protein 1 (MDP1) is a major protein in persistent Mycobacterium tuberculosis and has potential for diagnostic use in detecting asymptomatic infection. However, a previous ELISA-based study revealed a specificity problem; IgGs against MDP1 were detected in both M. tuberculosis-infected and uninfected individuals. Although the tertiary structures of an antigen are known to influence antibody recognition, the MDP1 structural details have not yet been investigated. The N-terminal half of MDP1, homologous to bacterial histone-like protein HU, is predicted to be responsible for DNA-binding, while the C-terminal half is assumed as totally intrinsically disordered regions. To clarify the relationship between the MDP1 tertiary structure and IgG recognition, we refined the purification method, which allow us to obtain a recombinant protein with the predicted structure. Furthermore, we showed that an IgG-ELISA using MDP1 purified by our refined method is indeed useful in the detection of asymptomatic tuberculosis
    corecore