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Abstract

Tuberculosis causes the highest mortality among all single infections. Asymptomatic tuber-

culosis, afflicting one third of the global human population, is the major source as 5–10% of

asymptomatic cases develop active tuberculosis during their lifetime. Thus it is one of impor-

tant issues to develop diagnostic tools for accurately detecting asymptomatic infection.

Mycobacterial DNA-binding protein 1 (MDP1) is a major protein in persistent Mycobacterium

tuberculosis and has potential for diagnostic use in detecting asymptomatic infection. How-

ever, a previous ELISA-based study revealed a specificity problem; IgGs against MDP1

were detected in both M. tuberculosis-infected and uninfected individuals. Although the ter-

tiary structures of an antigen are known to influence antibody recognition, the MDP1 struc-

tural details have not yet been investigated. The N-terminal half of MDP1, homologous to

bacterial histone-like protein HU, is predicted to be responsible for DNA-binding, while the

C-terminal half is assumed as totally intrinsically disordered regions. To clarify the relation-

ship between the MDP1 tertiary structure and IgG recognition, we refined the purification

method, which allow us to obtain a recombinant protein with the predicted structure. Further-

more, we showed that an IgG-ELISA using MDP1 purified by our refined method is indeed

useful in the detection of asymptomatic tuberculosis.
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Introduction

Tuberculosis remains a serious threat to human health. The most recent report by the World

Health Organization announced that, in 2016, 10.4 million people newly developed tuberculo-

sis and 1.7 million people died from this disease[1]. Mycobacterium tuberculosis, an acid-fast

Gram-positive bacillus, is an etiologic agent of tuberculosis. This intracellular pathogen can

escape from the bactericidal mechanisms of its hosts. It is estimated that more than 90% of M.

tuberculosis-infected individuals do not initially develop the disease but instead remain in an

asymptomatic state without eradicating the pathogen[2, 3].

Notably, reactivation of the disease occurs in 5–10% of these asymptomatic cases during

their lifetimes. Thus, asymptomatic infections are the major silent source of tuberculosis. The

establishment of a precise diagnosis of asymptomatic tuberculosis is thus crucial for disease

control[3, 4]. However, the sensitivity of currently available tools, such as the interferon-

gamma release assay (IGRA), is limited, probably because they detect immune responses to

proteins produced from growing rather than from persistent M. tuberculosis[5, 6].

The majority of persistent M. tuberculosis is thought to exist in the stationary or dormant

phase. Utilization of the antigens produced by persistent M. tuberculosis is a rational approach

to the development of a diagnosis method for asymptomatic tuberculosis. Mycobacterial

DNA-binding protein 1 (MDP1) is a major cellular protein of M. tuberculosis, and its expres-

sion is enhanced during both the stationary and dormant phases, in turn causing growth sup-

pression [7–10]. MDP1 also induces the tolerance to isoniazid, a front line anti-tuberculosis

drug [11], which is problemic characteristics of dormant M. tuberculosis [2, 12]. The expres-

sion of MDP1 can be triggered by an iron deficiency[13, 14], which mimics intracellular envi-

ronments. These reports suggest that individuals with asymptomatic tuberculosis have

substantial levels of MDP1 expression. In fact, anti-MDP1 antibodies stained a lung biopsy

sample derived from a person who had not developed tuberculosis[15].

Both the IgG and T-cell responses to MDP1 are elevated in patients with asymptomatic

tuberculosis, such as latent tuberculosis infection (LTBI) and past tuberculosis compared with

that in patients with active tuberculosis [15, 16]. In contrast, both B- and T-cell immune

responses to other tested antigens, such as early secretary antigen target with 6 kDa (ESAT6),

culture filtrate protein 10 kDa (CFP10) [17], and alpha-crystalline-like protein (Acr or HspX)

[18] are higher in active tuberculosis patients than in patients with LTBI or past tuberculosis

[15, 16]. Taken together, these data suggest that MDP1 is an antigenic marker for asymptom-

atic infection.

Antibodies can recognize both the primary and tertiary structures of proteins. The N-

terminal half of MDP1 has homology with the bacterial histone-like protein HU, while the C-

terminal half is a eukaryotic histone-like region containing repetitive sequences rich in lysine,

alanine, and proline. The crystal structure of the N-terminal half of MDP1 was shown to form

a HU-like dimer with long symmetric arms that is presumably responsible for DNA-binding

[19]. Our present sequence analyses suggest that the C-terminal half should be classified as

intrinsically disordered regions (IDRs). Thus, MDP1 is an intrinsically disordered protein

(IDP) like eukaryotic histones, which are rare in bacteria[20].

It is crucial to develop a method that allows us to obtain MDP1 with its native structure that

is recognized by the antibodies produced during natural M. tuberculosis infection. In previous

studies, we purified MDP1 by using acid extraction (AC-rfull-MDP1), based on a method

commonly used for the purification of eukaryotic histones[21, 22], and applied it to an IgG

enzyme-linked immunosorbent assay (ELISA)[10, 15, 16]. However, acid extraction is likely to

have caused MDP1 denaturation. In this study, we refined the purification method to work

Significance of native structure of MDP1 for the diagnosis of asymptomatic tuberculosis

PLOS ONE | https://doi.org/10.1371/journal.pone.0204160 October 25, 2018 2 / 18

States–Japan Cooperative Medical Science

Program against Tuberculosis and Leprosy to

Sohkichi Matsumoto. The funders had no role in

study design, data collection and analysis, decision

to publish, or preparation of the manuscript.

Competing interests: The authors have declared

that no competing interests exist.

https://doi.org/10.1371/journal.pone.0204160


without acid extraction and examined the antigenicity of MDP1 to IgG produced in M. tuber-
culosis-infected individuals.

Materials and methods

Structure prediction of MDP1

The secondary structure of MDP1 was predicted by the GTOP program of the National Insti-

tute of Genetics, Japan.

Recombinant protein preparation

E. coli BL21 (DE3) pLysS (L1191, Promega, Madison, WI, USA) cells were transformed

with the previously constructed plasmid that expresses rFull-MDP1[23]. The next day, a

single colony was inoculated in 40 mL of LB media and cultured at 37 ˚C with shaking. This

initial small culture was then transferred into 4 L of fresh LB media and further cultured at

37 ˚C with shaking at 100 rpm/min for approximately 2 h until reaching an optical density at

600 nm of 0.6. Isopropylβ-D-1-thiogalactopyranoside (IPTG) was then added to a final con-

centration of 0.5 mM, and the bacteria were further cultured for 3 h at 37 ˚C with shaking at

the same speed. At the end of the incubation, the culture was immediately cooled on ice and

then centrifuged at 7,000 rpm for 10 min at 4 ˚C using a RA-8R rotor (KUBOTA 7800). After

removing the supernatant, the pellet was washed with ice-cold phosphate-buffered saline

(PBS), and the bacteria were subsequently collected by centrifugation. The cells were re-

suspended in 45 mL of buffer A (50 mM sodium phosphate [pH 7.4], 100 mM sodium chlo-

ride, 0.2 mM EDTA, and 0.1 mM phenylmethanesulfonyl fluoride [PMSF]) per 1 L of culture

and then disrupted by using an ultrasonic generator with cooling on ice. After removing

clumps of disrupted lysate with a combination of centrifugation and filtration using a mem-

brane filter with a pore size of 0.22 μm, the bacterial lysate was loaded onto a His Trap column

(bed volume, 5 mL; 17524802 GE Healthcare) and eluted with a linear gradient of 10–300 mM

imidazole in buffer A. The proteins in the eluted fractions were analysed by SDS-PAGE using

a 15% polyacrylamide gel.

The protein fractions containing rFull-MDP1 were then precipitated with ammonium sul-

fate with stirring on ice for 3 h to produce a saturation degree of 80%. The sample was subse-

quently dialyzed at 4 ˚C overnight in a buffer containing 50 mM sodium phosphate, 300 mM

sodium chloride, and 10 mM imidazole (pH 6.8) and applied to a heparin column (HiTrap

Heparin HP 17040701, GE Healthcare). The proteins were eluted with a linear gradient of

300–1,500 mM NaCl. After checking the fractions that contained the eluted rN-MDP1 by

SDS-PAGE, the fractions were dialyzed overnight at 4 ˚C in buffer containing 50 mM sodium

phosphate, 300 mM sodium chloride, and 10 mM imidazole (pH 6.8). The proteins were then

loaded onto a CM Sepharose column (HiTrap CM FF 17515501, GE Healthcare) and eluted

with a linear gradient of 300–1,500 mM NaCl. The purity of proteins was analysed by

SDS-PAGE.

The DNAs encoding rN-MDP1 (residues 1–100) and rC-MDP1 (residues 101–209) were

amplified from the full-length MDP1 gene that we had previously cloned[23]. The primers

used for amplification of rN-MDP1 and rC-MDP1 were forward, 5'-gggtccttctgccgg
gagacgctgc-3', and reverse, 5'-caccaccaccaccaccactgagatcc-3', and for-

ward,5'-gctgttaagcgtggtgtgggggccagtgca-3', and reverse,5'-cccaaccc
tccgaaaccagtggtcctcgtt-3', respectively. The amplified DNAs were ligated into a

pET21b vector after cutting with Nde1 and Hind III. The integrity of the construct was con-

firmed by DNA sequencing. E. coli BL21 (DE3) pLysS (L1191) cells were transformed with

the rN-MDP1–pET21b or rC-MDP1–pET21b construct. Similar to the protocol used for
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expressing rFull-MDP1, 40 mL of a small initial culture were inoculated into 4 L of fresh LB

media, and IPTG was added approximately 2 h later to a final concentration of 0.5 μM. The

culture was then cooled to 18 ˚C and further incubated for 16–18 h at 18 ˚C to express

rN-MDP1. Similar to the method used for rFull-MDP1 preparation, the bacteria were washed

with ice-cold PBS and suspended in buffer A at the same ratio. The bacteria were subsequently

disrupted with an ultrasonic generator, and the resulting supernatant was loaded onto a His

Trap column after removing aggregates by centrifugation and filtration as described above.

The rN-MDP1 and rC-MDP1 were eluted with buffer A containing 500 mM imidazole. The

extracted proteins were then precipitated with 80% saturated ammonium sulfate, similar to

the protocol used for precipitating rFull-MDP1, and dialyzed at 4 ˚C in a buffer containing

50 mM sodium phosphate (pH 7.4) and 500 mM sodium chloride. The sample was then loaded

onto an SP Sepharose (SP FF 5 mL 17515701, GE Healthcare) column and eluted with a linear

gradient of 150–1,000 mM NaCl. The purity was examined by SDS-PAGE.

Peptide mass mapping by TripleTOF MS/MS

Purified recombinant protein (rN-MDP1, 5 μg) was denatured in 30 μL of 2% SDS, 62.5 mM

Tris-HCl (pH 6.8), 10% glycerol, and 2% 2-mercaptoethanol by heating for 10 min at 95 ˚C.

The denatured protein was co-polymerized with 10% (T) polyacrylamide in a microcentrifuge

tube[24]. The resulting gel was fixed in 50% methanol and 7% acetic acid, then reduced and

carbamoidomethylated by 10 mM DTT and 50 mM iodeacetamide, respectively, and finally

subjected to a conventional in-gel trypsin digestion. The peptide extract was dried in a vacuum

centrifuge and subsequently dissolved in 0.2% trifluoroacetic acid (TFA) and 5% acetonitrile.

The resulting peptide solution was processed sequentially through GL-Tip SDB and GL-Tip

GC spin columns (GL Sciences, Tokyo, Japan) according to the manufacturer’s instructions.

The purified peptide preparation was finally dissolved in 0.2% TFA and injected into a nano-

flow LC (Eksigent expert 400, AB Sciex) coupled with a tandem mass spectrometer (Triple-

TOF5600+, AB Sciex). Analyses were conducted in duplicate under direct injection mode

using a 75 μm × 15 cm, 3 μm ChromeXP C18 Chip column. Mobile phases A and B were 0.1%

formic acid and 0.1% formic acid in acetonitrile, respectively. Peptides were eluted by using a

20-min gradient from 2% to 32% B at 300 nL/min. MS spectra (250 msec) followed by 10 MS/

MS spectra (100 msec each) were acquired under the data-dependent mode.

Protein identification was carried out by using Mascot, version 2.2.1, (Matrix Science, Lon-

don, UK) as a search engine with an in-house database generated from the NCBInr protein

sequence database under the taxonomy of M. tuberculosis complex (18 July 2013 release).

Modification settings were: fixed modification, carbamoidmethylation on cysteine; variable

modifications, deamidated on asparagine and/or glutamine, N-terminal glutamine to pyroglu-

tamate, N-terminal glutamate to pyroglutamate, and oxidation on methionine. A maximum of

two missed cleavages was allowed. The significance threshold was set at 0.05 to give a false dis-

covery rate of less than 5%. Only the proteins matched by two or more peptides with a score

exceeding the “identity threshold” were reported.

CD spectrum analysis

The protein was dialyzed in 50 mM sodium phosphate buffer (pH 7.0) containing 150 mM,

300 mM, 500 mM, 750 mM, 1000 mM, 1500 mM, or 2000 mM NaCl and pH titration experi-

ments in steps of 1.0 (pH ranging from 7.5 to 0.5) adjusted to a final concentration of 3.2 μM.

The CD spectra were measured at 25 ˚C in cells that were 1-mm in width as previously

described[25, 26]. The CD spectra were recorded with a Jasco J-720.
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Sedimentation velocity (SV) analysis

The proteins were dialyzed against phosphate buffer (pH 7.0) containing 150 mM, 300 mM, or

500 mM NaCl, and the buffer (pH 0.5) containing 150 mM NaCl prior to performing a run.

The SV experiments were performed at 20 ˚C with an Optima XL-I (Beckman Coulter) using

an An50Ti rotor. Concentration gradients were measured by UV absorption at 230 nm with-

out a time interval. The partial specific volume of the protein, buffer density, and viscosity

were calculated by Sednterp[27]. The distribution functions of the sedimentation coefficients,

c(s), were calculated by using the SEDFIT program, assuming that the frictional ratio was com-

mon to all the molecular species. The c(s) was converted to the distribution of the molecular

weights, c(M), based on the Svedberg equation, which was implemented in SEDFIT[28].

Glutaraldehyde crosslinking

The recombinant proteins rFull-MDP1 and rN-MDP1 were separately incubated in a 150

mM, 300 mM, 500 mM, 750 mM, 1000 mM, 1500 mM, or 2000 mM NaCl solution at room

temperature for 30 min and were crosslinked by the addition of glutaraldehyde to a final con-

centration of 0.2% or were left untreated. The samples were then fractionated by SDS-PAGE

with a 15% polyacrylamide gel, and the proteins were visualized by coomassie blue staining or

silver staining.

Study populations

The enrolled individuals are described in Table 1. The healthy control (HC) group consisted of

12 students (aged 20–24 years, males/females = 5/5) at Osaka City University Medical School

(Osaka, Japan). They were negative for TB based on results from a chest x-ray and immune-

based assessments (tuberculin skin tests and IGRA, QuantiFERON TB-2G (QFT) (Cellestis,

Valencia, CA, USA), and they were not suspected of having any risks of M. tuberculosis infec-

tion, such as HIV infection, close contact with active TB-infected individuals, or chest x-ray

findings. The active TB group consisted of eight individuals (aged 23–74 years, M/F = 6/2)

diagnosed with active TB based on microbiologic examinations using either a positive culture

for M. tuberculosis or a positive DNA amplification test specific for M. tuberculosis (TRC Test;

TRCRapid-160, Tosoh, Tokyo, Japan) from sputum specimens. A positive QFT was obtained

for all cases in this group. The past TB group consisted of 12 plus 23 patients who had a defini-

tive past history of pulmonary TB more than 5 years previously. Their bacteriologic examina-

tions were negative in the sputum culture and nucleic acid amplification M. tuberculosis tests.

Their chest x-rays each showed sclerotic lesions and stable cavities. Because no infiltrating

shadows were found around these cavities, the cavitary lesions indicated a radiographic diag-

nosis of TB. In this group, 33% of individuals were QFT-positive. Subjects were excluded from

Table 1. Characteristics of the study population.

Healthy control

(HC)

Active TB Past TB-1 Past TB-2

Number of participants 10 8 12 23

Age, mean (years)±SD 21.1±1.14 44.13±17.28 72.33±10.59 68.00±11.11

Age range (years) 20–24 23–74 57–85 51–89

Male/female ratio 5/5 6/2 4/8 10/13

IGRA positive (%) 0 100 33.33 60.9

IGRA: interferon-gamma release assay; SD, standard deviation; TB, tuberculosis

https://doi.org/10.1371/journal.pone.0204160.t001
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this study when disease due to nontuberculous mycobacteria (NTM) was confirmed by

repeated cultures and satisfied the American Thoracic Society guidelines [29]. The serum spec-

imens were assayed without knowledge of the patients’ clinical characteristics. The studies

conducted using human subjects were approved by the research and ethical committees of the

National Toneyama Hospital (2009–0920) and Osaka City University Graduate School of

Medicine (1458), and informed consent was obtained from all subjects by written and

approved by the committees. All methods employed in this study were performed in accor-

dance with the relevant guidelines and regulations.

Enzyme-linked immunosorbent assay

Ninety-six-well microplates (Sumitomo) were coated with rFull-MDP1 (0.1 μg/ml), rN-MDP1

(0.1 μg/ml), CFP10 (0.5 μg/ml), EAST-6 (0.5 μg/ml), Antigen 85B (Ag85) (0.5 μg/ml), or puri-

fied protein derivatives (PPD) (0.5 μg/ml) by overnight incubation at 4 ˚C. The plates were

then blocked with PBS containing 5% skim milk and 0.05% Tween 20 overnight at 4 ˚C. The

wells were washed four times with PBS containing 0.05% Tween 20 (PBS-T). Human serum

samples diluted 1:200 by PBS-T and 0.5% skim milk were added to the wells and incubated for

1 h at 37 ˚C. After washing the wells four times with 300 μl of PBS-T, horse radish peroxidase-

conjugated anti-human IgG antibody was added. After incubation at 37 ˚C for 1 h, the plates

were washed four times with PBS-T. Colour development was performed by the addition of

SureBlue/TMB peroxidase substrate (Sera/Care Life Science Company, Gaithersburg, MD,

USA) for around 10 min and was stopped by the addition of 20 μL of 6 M HCl. The optical

density of the sample was measured at 450 nm.

Statistical analyses

Optical density differences between study groups were determined using box-and-whisker

plot. ROC curve analysis and the AUC for each antigen were calculated with IBM SPSS soft-

ware Ver. 21 and 22 (Armonk, New York, USA).

Results

Structure prediction of MDP1

We performed a structure prediction for M. tuberculosis MDP1 (Rv2986c) by using GTOP

software (National Institute of Genetics Japan). The results revealed that MDP1 contains two

distinct domains, as shown in Fig 1. The N-terminal domain shares characteristics with the

Fig 1. Schematic of the MDP1 secondary structure prediction by GTOP. GTOP was used to predict the secondary structure of

MDP1, and schematics of the findings are shown. The N-terminal half of MDP1 contains three alpha helix portions (alpha 1–3; red

boxes) and five beta sheet regions (beta 1–5; blue arrows). In contrast, the C-terminal half of MDP1 does not show a stable structure,

suggesting the presence of intrinsically disordered regions (IDRs). Each number indicates the amino acid position in MDP1.

https://doi.org/10.1371/journal.pone.0204160.g001
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bacterial histone-like protein HU. It was recently reported that this region forms dimers with

long symmetric arms, which are presumably responsible for DNA-binding[19]. In contrast,

the C-terminal domain, including six PAKK repetitive sequences, did not show any secondary

structure, suggesting that the C-terminal half has IDRs (Fig 1).

Purification of recombinant MDP1 proteins

We expressed amino acids 1–100 of MDP1 as a histidine-tagged protein (rN-MDP1) in Escher-
ichia coli BL21 (DE3) pLysS. We purified rN-MDP1 from the lysates by first using a nickel

affinity chromatograph (Part A of S2 Fig). We then repeatedly precipitated MDP1-rich frac-

tions with an ammonium sulphate precipitation to remove contaminating nucleic acids, which

was not involved in the method that Bhowmick et al used [19]. We then performed heparin

column chromatography and finally cation exchange column chromatography (Part B of

S2 Fig). We confirmed that the purified recombinant protein was rN-MDP1 via mass spectro-

metric identification (S1 Fig) and western blotting using a specific monoclonal antibody that

recognizes the amino acids 51–70 region of MDP1 (mab7C)[7]. As shown in Part B of S2 Fig,

single bands of rN-MDP1 were observed for fractions 19 to 21 (150 mM to 1,000 mM NaCl

gradients) in the final ion exchange column chromatography, and their absorbance levels at

260 nm were each below 0.05 per 1 mg protein, indicating that contaminating DNA was

removed from the purified protein.

We then purified full-length HIS-tagged recombinant MDP1 (rFull-MDP1). Similar to the

method used for purification of rN-MDP1, we first applied the lysate of bacteria that expressed

rFull-MDP1 to nickel column chromatography (Part A of S3 Fig). The rFull-MDP1-rich frac-

tion was then applied to heparin column chromatography and eluted by a NaCl gradient. The

rFull-MDP1-rich fractions were then precipitated with an ammonium sulphate precipitation

and further fractionated with cation exchange chromatography (CM sepharose) with a density

gradient of NaCl. The resulting eluates were analysed by SDS-PAGE and are shown in Part B

of S3 Fig. We examined the contamination of nucleic acids in fractions 4 to 8 and found that

the absorbance at 260 nm is below 0.01 per 1 mg protein, indicating that the purification pro-

cedure successfully removed contaminating nucleic acids.

Analysis of MDP1 secondary structures

To obtain experimental evidence for the secondary structure prediction of the recombinant

proteins, we performed analyses using circular dichroism (CD) spectroscopy. These analyses

showed that the alpha-helix content of rFull-MDP1 purified by the present protocol was 20%,

whereas the corresponding protein purified by acid extraction showed a 1.4% value, indicating

that acid extraction really disrupts the protein structure (S4 Fig). Similarly, the alpha-helix

content of rN-MDP1, purified by the present protocol or by acid extraction was 35% or 9.7%,

respectively, supporting the finding that the previous protocol denatured the MDP1 protein.

We also analysed the effects of salt concentration on the secondary structure of rN-MDP1

purified by the present control. The recombinant proteins were dialyzed using buffers with

various NaCl concentrations ranging from 150 mM to 2,000 mM, and then their CD spectra

were measured. The resulting data revealed that the alpha-helix contents gradually increased

and approached the predicted values as the salt concentrations increased, as shown in Fig 2A–

2C. This indicates that higher salt concentrations stabilize the structure of the N-terminal half

of MDP1 (Fig 2D).

Recently it was shown that Helicobacter pylori HU is likely to be stabilized under acidic con-

ditions [30], which is structural and sequence homolog of N-terminal MDP1. We performed

pH titration experiments in steps of 1.0 (pH ranging from 0.5 to 7.5) to know the acid
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denaturation behavior of rN-MDP1 (Fig 2E) and rFull-MDP1 (Fig 2F) in the physical concen-

tration of NaCl (150 mM). As shown in Fig 2E and 2F, there is no obvious change of CD spec-

tra depending on pH range in both rN-MDP1 and rFull-MDP1. This suggests different

characteristics of HU proteins in M. tuberculosis and H. pylori.

Analysis of oligomerization and influence of salt concentration

We next studied the oligomerization state of MDP1. We dialyzed rN-MDP1 and rFull-MDP1

against Tris-HCl buffer (pH 7.0) containing 150 mM, 300 mM, or 500 mM NaCl and subjected

Fig 2. CD spectroscopy measurements of rN-MDP1 and rFull-MDP1. The secondary structural changes of

rN-MDP1 and rFull-MDP1 with different salt concentrations were monitored by CD spectroscopy studies. (A–C) CD

spectra of rN-MDP1 in phosphate buffer (pH 7.0) containing (A) 150 mM NaCl, (B) 1,000 mM NaCl, or (C) 2,000 mM

NaCl. (D) Merged CD spectra of rN-MDP1 in phosphate buffer pH 7.0 containing 150 mM, 300 mM, 500 mM, 750

mM, 1,000 mM, 1,500 mM, or 2,000 mM NaCl. Merged CD spectra of rN-MDP1 (E) and rFull-MDP1 (F) at pH0.5,

1.5, 2.5, 3.5, 4.5, 5.5, 6.5 and 7.5 in buffer (pH 7.0) containing 150 mM NaCl.

https://doi.org/10.1371/journal.pone.0204160.g002
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the resulting products to sedimentation velocity (SV). Analyses of the SV data with SEDFIT

software indicated that rN-MDP1 is a monomer when the salt concentration is 150 mM

(Fig 3A), but higher salt concentrations induced dimerization of rN-MDP1 at rates of 17% at

300 mM (Fig 3B) and 34% at 500 mM (Fig 3C). In contrast, rFull-MDP1 was monomer in

every salt concentration we tested (Fig 3D–3F). These suggested that C-terminal IDR region

disturbs dimerization of MDP1.

Because SV measurement cannot be applied for molecules in high salt buffer, we performed

glutaraldehyde crosslinking assays to determine the oligomerization status of MDP1. We incu-

bated rN-MDP1 in solvent containing 150 mM, 300 mM, 500 mM, 750 mM, 1,000 mM, 1,500

mM, or 2,000 mM NaCl in the presence or absence of 0.2% glutaraldehyde, and the resulting

products were subjected to SDS-PAGE. As shown in Part A of S5 Fig, the amount of

rN-MDP1 monomer was decreased as the salt concentration increased, and most rN-MDP1

formed dimers at 1,500 mM and 2,000 mM NaCl.

Fig 3. Sedimentation velocity measurements. Left: Radial fluorescence scans (dot colours indicate times in the

following order purple-blue-green-yellow-red) during sedimentation at 20 ˚C. Solid lines are the best-fit with a single

species. Right: The resulting sedimentation coefficient distributions. The peak of “a” and “b” was estimated to be the

monomer and dimer, respectively. (A–G). Results for rN-MDP1 in buffer containing 150 mM (A), 300 mM (B), or 500

mM (C) NaCl and those for r-Full-MDP 1 in buffer containing 150 mM (D), 300 mM (E) 500 mM (F). r-Full-MDP 1

in 150 mM NaCl buffer pH 0.5 (G).

https://doi.org/10.1371/journal.pone.0204160.g003
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We also analysed the oligomerization of rFull-MDP1 in Tris buffer containing 150 mM,

300 mM, 500 mM, 1,000 mM, 1,500 mM, or 2,000 mM NaCl. We could not find any obvious

dimers in 150 mM, 300 mM, or 500 mM, NaCl as analyzed SV measurement. In contrast,

dimers clearly appeared at 1,000 mM NaCl, and most of the recombinant proteins dimerized

at 2,000 mM NaCl (Part B of S5 Fig). Taken together, these data demonstrate that MDP1

forms dimers in solvents with high salt concentrations.

Evaluation of the antigenicities of recombinant MDP1 to IgG from M.

tuberculosis-infected individuals

We then tested the antigenicities of the recombinant MDP1 proteins that were purified in this

study and compared them with those of the corresponding recombinant proteins purified by

the previous method[15, 16]. We used recombinant CFP10, ESAT6, and Ag85, and PPD as a

control[15]. The CFP10 and ESAT6 proteins, produced from M. tuberculosis during the

growth phase[31], is used in IGRA diagnostic tests for the detection of M. tuberculosis infec-

tion[32]. Ag85 is a major secretary protein and its expression is limited at early phase of M.

tuberculosis infection [33, 34]. We collected blood from eight active tuberculosis patients and

12 past tuberculosis individuals, as shown in Table 1. We also collected blood from 10 healthy

individuals with IGRA-negative results and normal chest x-rays.

We first coated plates with CFP10, ESAT6, Ag85, PPD, and rFull-MDP1, and detected anti-

gen-specific IgG in the blood samples by ELISA. The results revealed that the IgG responses to

CFP10, ESAT6, Ag85, and PPD are significantly higher in active tuberculosis patients (Fig 4F–

Fig 4. ELISAs to detect human MDP1, CFP10, ESTA6, Ag85, and PPD-specific IgG antibodies. The results of

ELISAs performed to detect IgG antibodies that recognize recombinant proteins and PPD in human blood samples.

The tested sera in A-I were from 12 past tuberculosis (Past TB) patients, 8 active tuberculosis patients (Active TB), and

10 healthy control (Healthy) individuals (also for J). Additionally, sera derived from 23 individuals with past

tuberculosis were tested in Fig. 4J. (A) IgG responses to AC-rFull-MDP1, which was purified by acid extraction. (B–C)

IgG responses to rFull-MDP1, purified by the refined purification method, was immobilized in buffer containing 150

mM NaCl (B) or 2 M NaCl (C). (D–E) IgG responses to rN-MDP1 immobilized in 150 mM NaCl (D) and 2 M NaCl

(E). (F–I) IgG responses to CFP10 (F), ESAT6 (G), Ag85 (H), and PPD (I). (J) IgG responses to rFull-MDP1 of the 10

healthy control and those to rFull-MDP1, rN-MDP1, and rC-MDP1 of 23 other past TB individuals. �, p<0.05.
��p<0.01.

https://doi.org/10.1371/journal.pone.0204160.g004
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4I), implying its merit for the detection of active tuberculosis. When we used AC-rfull-MDP1,

the average of IgG level trended upward in the following order: healthy control, active tubercu-

losis, and past tuberculosis; however, the differences between these groups are not statistically

significant (Fig 4A). In contrast, when we used the equivalent protein purified by the current

method, the background IgG reaction from healthy controls was decreased and the anti-

MDP1 IgG level was significantly higher in past tuberculosis patients than in any other group

(Fig 4B).

The oligomerization analysis results suggest that salt concentration affects the secondary

structure and polymerization of MDP1 (Part A and Part B of S5 Fig). Therefore, we examined

the effects of salt concentration on the detection of MDP1-specific IgG. We dialyzed rFull-

MDP1 against a solution containing 150 mM (monomer) or 2 M NaCl (dimer) and used the

results to coat ELISA plates. The resulting IgG ELISA data showed that both the monomeric

and dimeric rFull-MDP1 have the similar antigenicity, suggesting that dimerization is not

important for recognition by IgG in the tested samples (Fig 4B and 4C).

We performed receiver operating characteristic (ROC) analyses and presented the data in

Table 2. Area under the curves (AUCs) of rFull-MDP1 immobilized in 150 and 2,000 mM

NaCl were 0.817 (95% CI 0.637–0.996, p = 0.012) and 0.792 (95% CI 0.415–0.902, p = 0.021) in

analysis between the past tuberculosis and HC groups. In contrast, those of CFP10, ESAT6,

Ag85, and PPD were 0.633 (95% CI 0.388–0.879, p = 0.291), 0.575 (95% CI 0.33–0.82, p = 553),

0.558 (95% CI 0.308–0.809, p = 0.644), and 0.700 (95% CI 0.472–0.928, p = 0.114), respectively.

These data show that rFull-MDP1 purified by the current method is useful for detecting

asymptomatic tuberculosis that cannot be detected by IgG against CFP10, ESAT6, and Ag85.

We lastly addressed whether or not the C-terminal IDRs affect the recognition of MDP1 by

IgG (Fig 4B–4E). We compared the IgG binding levels between rN-MDP1 and rFull-MDP1

and found that the antigenicity of rN-MDP1 is remarkably lower than that of rFull-MDP1,

suggesting importance of C-terminal IDRs in the recognition by human IgG (between Fig 4B

and 4E, or 4C and 4E).

In order to study whether C-terminal IDR is substantially recognized by human IgG, we

expressed the C-terminal half IDR domain of MDP1 (rC-MDP1) consisting 101–209 amino

acids of MDP1, as histidine-tagged protein and purified by the nickel column chromatograph.

We assessed its antigenicity by IgG-ELISA by using another set of sera derived from 23 indi-

viduals with past tuberculosis (Table 1). The data showed that IgG response is higher to

rC-MDP1 than rN-MDP1 but was lower than rFull-MDP1 (Fig 4J). This suggest the

Table 2. ROC analysis.

Antigens Healthy vs Past TB Healthy vs Active TB Active TB vs Past TB

AUC 95% CI p-value AUC 95% CI p-value AUC 95% CI p-value

MDP1

(150 mM)

0.817 0.637–0.996 0.012� 0.775 0.55–1 0.05� 0.625 0.367–0.883 0.335

MDP1

(2M)

0.792 0.415–0.902 0.021� 0.788 0.556–1 0.041� 0.677 0.427–0.927 0.19

CFP10 0.633 0.388–0.879 0.291 0.85 0.667–1 0.013� 0.333 0.062–0.604 0.217

ESAT6 0.575 0.33–0.82 0.553 0.825 0.63–1 0.037� 0.219 0.01–0.428 0.099

Ag85 0.558 0.308–0.809 0.644 0.563 0.272–0.853 0.657 0.323 0.025–0.621 0.323

PPD 0.7 0.472–0.928 0.114 0.85 0.673–1 0.013� 0.115 0–0.258 0.004�

MDP1 (150 mM), rFull-MDP1 was immobilized in the buffer containing 150 mM NaCl. MDP1 (2 M), rFull-MDP1 was immobilized in the buffer containing 2 M NaCl.

� p<0.05.

https://doi.org/10.1371/journal.pone.0204160.t002
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predominant recognition of C-terminal IDRs by MDP1-specific IgG and importance of whole

protein structure in the IgG recognition.

Discussion

MDP1 has growth-arresting activity and is predicted to be a major antigen of persistent M.

tuberculosis. As such, it is also presumed to be a marker of asymptomatic tuberculosis. In this

study, we established a new method to purify recombinant MDP1, which adopted the pre-

dicted structure after this purification, and showed the usefulness of this recombinant protein

in the development of a diagnostic test for asymptomatic tuberculosis.

The structure prediction of MDP1 by GTOP (Fig 1) suggested that the C-terminal half of

MDP1 is intrinsically disordered. Interest in IDPs has recently been increasing because IDPs

have a large variety of important cellular functions [35, 36]. IDPs are ubiquitous in eukaryotes,

and long IDRs occupy 33% of the entirety of eukaryotic proteins[20]. Eukaryotic histones are

the most well-known examples of IDPs that contain long IDRs. Most notably, histone tails,

corresponding to IDRs, play important roles in chromatin functions related to epigenetics

[35–37]. In contrast to eukaryotes, long IDPs are rare in bacteria or archaea, as revealed from

estimated contents of only 2% and 4% in archaeal and eubacterial proteins, respectively[20]. In

fact, most histone-like proteins in bacteria do not contain IDRs, except for MDP1 homologues.

Notably, the C-terminal IDRs of MDP1 have DNA-binding activities [38–40], implying its

involvement in the construction of nucleoid architecture. Indeed, our current study showed

the important role of C-terminal IDR in MDP1-functions [41].

Acid-extracted MDP1 was previously eluted in the 195-kDa fraction of a gel filtration chro-

matograph[10]. Additionally, the x-ray crystal structure of rN-MDP1 indicated that the pro-

tein forms a dimeric structure [19]. In this study, the SV data analysed by SEDFIT indicated

that 97% of the protein is monomeric, which suggests that the gel filtration analysis in the pre-

vious study overestimated the molecular weight of MDP1[10]. This discrepancy could be

related to the aggregation of MDP1 protein, which is denatured by acid extraction (S4 Fig).

Here, the results of SV measurements and glutaraldehyde crosslinking assays demonstrate that

both the rFull-MDP1 and rN-MDP1 were monomeric at the physiological salt concentration

(Fig 3 and S5 Fig).

Notably, our results also revealed that both the rFull-MDP1 and rN-MDP1 form dimers as

the salt concentration increases (Fig 3 and S5 Fig). The CD analysis showed that alpha-helical

contents of rN-MDP1 increase in progressively higher salt concentrations. This implies that

the dimer formation is coupled with content of secondary structures. It was reported that most

other bacterial HU-like proteins form dimers at 150 mM NaCl33. In this context, the MDP1

dimer appears to be more unstable than these other related proteins. We presume that

rN-MDP1 could be crystallized as a dimer because of a high salt concentration, such as 3 M

sodium formate [19]. Furthermore, it is conceivable that MDP1 may be interchangeable

between monomeric and dimeric states in the crowded cytoplasm of mycobacteria [42].

ELISA experiments revealed that rFull-MDP1, purified by the present method, may be use-

ful for the diagnosis of asymptomatic tuberculosis (Fig 4B and 4C). This highlights the impor-

tance of preserving native protein structures in serodiagnostic assays. The results of our IgG

binding level comparison between rFull-MDP1 and rN-MDP1 or rC-MDP1 suggest that IDRs

are functional in the recognition of MDP1 by human IgG (Fig 4B–4E). There are two types of

epitopes recognized by antibodies. A “continuous epitope” is a part of the amino acid sequence

of a protein, while a “discontinuous epitope” consists of residues from different parts of the

protein sequence. It was reported that discontinuous epitopes are more frequent than continu-

ous ones[43]. The precise prediction of antibody epitopes is not yet possible, but surface
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accessible regions[44], flexible portions[45], and portions protruding from the protein’s globu-

lar surfaces[46] are correlated with antibody epitopes[47]. Based on this consideration, the

IDRs of MDP1 may be feasible targets of IgG because IDRs possess several of these characteris-

tics; they are surface exposed, flexible, and protruded. Nevertheless, IgG titer to rC-MDP1 was

lower than rfull-MDP1 (Fig 4J), suggesting the demand for entire polypeptide structure in rec-

ognition of MDP1-IDR by human IgG.

The level of IgG antibodies against CFP10, ESAT6, Ag85, and PPD was elevated in patients

with active tuberculosis (Fig 4F–4I). CFP10 forms a heterodimer with ESAT6, which has pore-

forming activity in the phagosomal membrane[48, 49]. This activity of the CFP10–ESAT6

complex is involved in the virulence of M. tuberculosis and in active disease[50]. Ag85 is a

mycolyltransferase involved in the final stages of mycobacterial cell wall assembly [51] and its

expression is limited at early phase of M. tuberculosis infection [33, 34]. PPD is heat-inactivated

culture filtrate of M. tuberculosis at early growth stage in in vitro. Accordingly, our data show

that the immune response to CFP10, ESAT6, Ag85 and PPD are higher while the immune

response against MDP1 is lower in patients with active tuberculosis than in patients with past

tuberculosis. This implies that an evaluation of the ratio of immune responses to CFP10–

ESAT6 and Ag85 vs MDP1 might be useful for determining the disease status of tuberculosis.

Currently, IGRAs are clinically applied for the detection of asymptomatic tuberculosis

[32, 52]. However IGRA-negative subjects sometimes develop tuberculosis and IGRAs are also

expensive and have complicated handling as a point-of-care test [3, 4, 52, 53]. The serodiag-

nostic kits that have been developed thus far are not recommended for the detection of active

tuberculosis. However, serodiagnosis has the benefit of predicting disease progression because

antibody levels are correlated with the amounts of antigens that typically increase before dis-

ease progression[54]. It also has the advantage of reducing the cost of diagnostic kits by replac-

ing with present cell culture-based diagnostic methods, such as IGRA, and allowing easy

handling.

Multiple antigens produced by persistent M. tuberculosis may be useful for the detection of

IGRA-negative asymptomatic infections. Although further evaluation of a combination of bio-

markers is necessary, anti-MDP1 antibody may be a potential marker of asymptomatic tuber-

culosis. Besides, several recent reports have shown the importance of antibodies in host

protection against tuberculosis [16, 55–58]. Higher level of protective IgGs were produced

more in the individuals with LTBI than active tuberculosis patients [57]. There is the possibil-

ity that MDP1-antibodies contribute to host protection in asymptomatic status. This is par-

tially supported by our current study of the M. tuberculosis-infected individuals [16] and

MDP1 vaccination indeed induced the protection in mice against tuberculosis [59]. Taking the

tertiary structures of antigens into consideration will be important for both of developments of

serodiagnosis and vaccines for tuberculosis.

Supporting information

S1 Fig. A mass spectrometric analysis of purified rN-MDP1 is shown. Sequence coverage

was 84% in the N-terminal 100 amino acid sequence of MDP1; these amino acids are marked

in red.

(TIFF)

S2 Fig. (A) A representative gel resulting from an SDS-PAGE analysis of the proteins fraction-

ated by a HIS-trap column. Recombinant E. coli expressing rN-MDP1 were lysed by sonication

and centrifuged. The supernatant was then loaded onto a His-Trap column in the presence of

10 mM imidazole and eluted by 500 mM imidazole. Lane 1: lysates after disruption of the bac-

teria; lane 2: applied supernatants of bacterial lysates; lane 3: column flow-through; lanes 4–7:
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fractions 7–10, respectively; and M, molecular weight marker. (B) A representative gel result-

ing from an SDS-PAGE analysis of the proteins fractionated by ion exchange column chroma-

tography. The proteins were passed thorough an ion exchange column and eluted with a linear

gradient of 150–1,000 mM NaCl. Lane 1: applied sample; lane 2: column flow-through; lanes

3–10: fractions 16–23, respectively; and M, molecular weight marker. Original gel images of

S2-A and S2-B are shown in S2-C and S2-D, respectively.

(TIFF)

S3 Fig. (A) A representative gel resulting from an SDS-PAGE analysis of the proteins fraction-

ated by a HIS-trap column. Recombinant E. coli expressing rFull-MDP1 were lysed by sonica-

tion and centrifuged. The supernatant was then loaded onto a His-Trap column in the

presence of 10 mM imidazole and eluted by 300 mM imidazole. Lane 1: lysates after disruption

of the bacteria; lane 2: applied supernatants of bacterial lysates; lane 3: column flow-through;

lanes 4–11: fractions 16–23, respectively; and M, molecular weight marker. (B) A representative

gel resulting from an SDS-PAGE analysis of the proteins fractionated by ion exchange column

chromatography. The rFull-MDP1 purified by heparin column chromatography was further

purified by CM Sepharose column chromatography. The proteins were eluted with a linear

gradient of 100–1,000 mM NaCl. Lane 1: applied sample after heparin column purification;

lane 2: column flow-through, lanes 3–8: fractions 14–19, respectively; and M, molecular weight

marker. Original gel images of S3-A and S3-B are shown in S3-C and S3-D, respectively.

(TIFF)

S4 Fig. A comparison between the secondary structures of rFull-MDP1 purified by the dif-

ferent methods based on CD spectroscopy studies. (A) CD spectra of rFull-MDP1 purified

through acid extraction. (B) CD spectra of rFull-MDP1 purified by the refined method without

acid extraction. Proteins were resolved in phosphate buffer (pH 7.0) containing 150 mM NaCl.

(TIFF)

S5 Fig. SDS-PAGE analysis of rN-MDP1 (A) and rFull-MDP1 (B) with or without cross-

linking by glutaraldehyde. The proteins were cross-linked at various concentrations of NaCl

and fractionated with SDS-PAGE. The gels were stained with CBB (A) and silver staining (B).

Original gel images of S5-A and S5-B are shown in S5-C and S5-D, respectively.

(TIFF)
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