139 research outputs found

    A Page from Our Book: Social Justice Lessons from the HBCU Writing Center

    Get PDF

    Hydrography, nutrients, and carbon pools in the Pacific sector of the Southern Ocean: Implications for carbon flux

    Get PDF
    PDF Tools Share Abstract We investigated the hydrography, nutrients, and dissolved and particulate carbon pools in the western Pacific sector of the Antarctic Circumpolar Current (ACC) during austral summer 1996 to assess the region\u27s role in the carbon cycle. Low f CO2 values along two transects indicated that much of the study area was a sink for atmospheric CO2. The f CO2 values were lowest near the Polar Front (PF) and the Subtropical Front (STF), concomitant with maxima of chlorophyll a and particulate and dissolved organic carbon. The largest biomass accumulations did not occur at fronts, which had high surface geostrophic velocities (20–51 cm s−1), but in relatively low velocity regions near fronts or in an eddy. Thus vertical motion and horizontal advection associated with fronts may have replenished nutrients in surface waters but also dispersed phytoplankton. Although surface waters north of the PF have been characterized as a “high nutrient‐low chlorophyll” region, low silicic acid (Si) concentrations (2–4 μM ) may limit production of large diatoms and therefore the potential carbon flux. Low concentrations (4–10 μM Si) at depths of winter mixing constrain the level of Si replenishment to surface waters. It has been suggested that an increase in aeolian iron north of the PF may increase primary productivity and carbon export. Our results, however, indicate that while diatom growth and carbon export may be enhanced, the extent ultimately would be limited by the vertical supply of Si. South of the PF, the primary mechanism by which carbon is exported to deep water appears to be through diatom flux. We suggest that north of the PF, particulate and dissolved carbon may be exported primarily to intermediate depths through subduction and diapycnal mixing associated with Subantarctic Mode Water and Antarctic Intermediate Water formation. These physical‐biological interactions and Si dynamics should be included in future biogeochemical models to provide a more accurate prediction of carbon flux

    Lessons Learned in Pursuit of Lifelong Learning in Science, Technology, and Society

    Get PDF
    This case study aims to assess whether the course, Science, Technology, and Society, as part of the recent science education reforms in Philippine higher education, can foster science literacy and bring about lifelong learning in science, technology, and society. Five students, who were enrolled in Science, Technology, and Society during the first semester of the academic year 2018 to 2019 in an institution of Jesuit higher education in the Philippines, participated in a focus group discussion about their class experiences. Thematic analysis of verbatim transcript revealed that students were not confident in considering themselves literate about science after a semester of classes because of several concerns in the content and delivery of the course. Specifically, topics covered were not interdisciplinary as they should be, lacked depth, and were not relatable to students. Some teachers were inclined towards knowledge transmission and required more support for teaching that espouses student-centered learning. Teachers’ lack of motivation to teach the course was also noticeable among students and might have left a negative impression about the course. These findings can provide valuable insights into how efforts in reforming science education towards lifelong learning in science, technology, and society can be made better and effective using a constructive alignment of intended learning outcomes, teaching-learning activities, and assessment tasks

    Interfacial effects on droplet dynamics in poiseuille flow

    Get PDF
    Many properties of emulsions arise from interfacial rheology, but a theoretical understanding of the effect of interfacial viscosities on droplet dynamics is lacking. Here we report such a theory, relating to isolated spherical drops in a Poiseuille flow. Stokes flow is assumed in the bulk phases, and a jump in hydrodynamic stress at the interface is balanced by Marangoni and surface viscous forces according to the Boussinesq–Scriven constitutive law. Our model employs a linear equation of state for the surfactant. Our analysis predicts slip, cross-stream migration and droplet-circulation velocities. These results and the corresponding interfacial parameters are separable: e.g., cross-stream migration occurs only if gradients in surfactant concentration are present; slip velocity depends on viscosity contrast and dilatational properties, but not on shear Boussinesq number. This separability allows a new and advantageous means to measure surface viscous and elastic forces directly from the drop interface

    Active Connections: Means For Faculty To Create An Environment In Which Students WANT To Engage!

    Get PDF
    This interactive, cross-disciplinary research explores face-to-face and online strategies for faculty to deploy in the classroom that encourage connections beyond forced engagement methodologies commonly used. Concentration is on methods of connecting that are “out of the mainstream” and benefit both students and faculty. Findings indicate that the more students feel as a valued participant of the learning community, the more they engage in the class activities

    Lake–landscape connections at the forest–tundra transition of northern Manitoba

    Get PDF
    To better understand aquatic–terrestrial linkages in the sub-Arctic, and specifically the relative importance of landscape position versus land cover, we surveyed lakes, soils, land cover, and lake/basin characteristics in a 14 000 km2 region of acidic forest–tundra landscape near northern Manitoba, Canada (59.56°N, 97.72°W) in 2009. We analyzed 39 different biological, chemical, and physical variables for lakes and soils. We used a remote-sensing–based classification to determine that the landscape was 21% water, 46% peat-forming lowland, and 24.9% open tundra, and we assigned lake order to all lakes based on the order of the outlet stream for each lake. Lakes were oligotrophic to mesotrophic (median total phosphorus: TP = 11.8 µg L−1), N-limited (median dissolved inorganic nitrogen: TP = 1.6), acidic (median pH 5.7), and had moderate amounts of dissolved organic carbon (median DOC = 5.2 mg L−1). We identified 2 principle groups of variables represented by DOC and conductivity/cations, respectively, that captured major axes of lake variation. DOC, 2 measures of DOC quality (a250/a365 [a proxy for molecular weight and aromaticity] and specific ultraviolet absorbance), and Fe and were significantly correlated with percent cover of lowland forest, but conductivity/cations were not correlated with variation in land cover. Soils were generally acidic (pH 2.7–4.4) and nutrient-poor, and wetland soils contained more carbon and higher concentrations of calcium, magnesium, and other cations than upland open tundra. Landscape position of lakes (measured as lake order) did not capture systematic differences in land cover or lake biogeochemistry. Our results highlight the importance of lowland export of DOC to lakes and further suggest the need for additional regional studies of aquatic–terrestrial connections in Arctic and sub-Arctic landscapes

    Effects of Single and Integrated Water, Sanitation, Handwashing, and Nutrition Interventions on Child Soil-Transmitted Helminth and Giardia infections: A Cluster-Randomized Controlled Trial in Rural Kenya

    Get PDF
    Helminth and protozoan infections affect more than 1 billion children globally. Improving water quality, sanitation, handwashing, and nutrition could be more sustainable control strategies for parasite infections than mass drug administration, while providing other quality of life benefits

    Reconstructing grassland fire history using sedimentary charcoal: Considering count, size and shape

    Get PDF
    Citation: Leys, B. A., Commerford, J. L., & McLauchlan, K. K. (2017). Reconstructing grassland fire history using sedimentary charcoal: Considering count, size and shape. Plos One, 12(4), 15. doi:10.1371/journal.pone.0176445Fire is a key Earth system process, with 80% of annual fire activity taking place in grassland areas. However, past fire regimes in grassland systems have been difficult to quantify due to challenges in interpreting the charcoal signal in depositional environments. To improve reconstructions of grassland fire regimes, it is essential to assess two key traits: (1) charcoal count, and (2) charcoal shape. In this study, we quantified the number of charcoal pieces in 51 sediment samples of ponds in the Great Plains and tested its relevance as a proxy for the fire regime by examining 13 potential factors influencing charcoal count, including various fire regime components (e.g. the fire frequency, the area burned, and the fire season), vegetation cover and pollen assemblages, and climate variables. We also quantified the width to length (W: L) ratio of charcoal particles, to assess its utility as a proxy of fuel types in grassland environments by direct comparison with vegetation cover and pollen assemblages. Our first conclusion is that charcoal particles produced by grassland fires are smaller than those produced by forest fires. Thus, a mesh size of 120 mu m as used in forested environments is too large for grassland ecosystems. We recommend counting all charcoal particles over 60 mu m in grasslands and mixed grass-forest environments to increase the number of samples with useful data. Second, a W: L ratio of 0.5 or smaller appears to be an indicator for fuel types, when vegetation surrounding the site is before composed of at least 40% grassland vegetation. Third, the area burned within 1060m of the depositional environments explained both the count and the area of charcoal particles. Therefore, changes in charcoal count or charcoal area through time indicate a change in area burned. The fire regimes of grassland systems, including both human and climatic influences on fire behavior, can be characterized by long-term charcoal records

    SARS-CoV-2 evolution during treatment of chronic infection

    Get PDF
    The spike protein of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is critical for virus infection through the engagement of the human ACE2 protein1 and is a major antibody target. Here we show that chronic infection with SARS-CoV-2 leads to viral evolution and reduced sensitivity to neutralizing antibodies in an immunosuppressed individual treated with convalescent plasma, by generating whole-genome ultra-deep sequences for 23 time points that span 101 days and using in vitro techniques to characterize the mutations revealed by sequencing. There was little change in the overall structure of the viral population after two courses of remdesivir during the first 57 days. However, after convalescent plasma therapy, we observed large, dynamic shifts in the viral population, with the emergence of a dominant viral strain that contained a substitution (D796H) in the S2 subunit and a deletion (ΔH69/ΔV70) in the S1 N-terminal domain of the spike protein. As passively transferred serum antibodies diminished, viruses with the escape genotype were reduced in frequency, before returning during a final, unsuccessful course of convalescent plasma treatment. In vitro, the spike double mutant bearing both ΔH69/ΔV70 and D796H conferred modestly decreased sensitivity to convalescent plasma, while maintaining infectivity levels that were similar to the wild-type virus.The spike substitution mutant D796H appeared to be the main contributor to the decreased susceptibility to neutralizing antibodies, but this mutation resulted in an infectivity defect. The spike deletion mutant ΔH69/ΔV70 had a twofold higher level of infectivity than wild-type SARS-CoV-2, possibly compensating for the reduced infectivity of the D796H mutation. These data reveal strong selection on SARS-CoV-2 during convalescent plasma therapy, which is associated with the emergence of viral variants that show evidence of reduced susceptibility to neutralizing antibodies in immunosuppressed individuals

    A Pilot Study of IL-2Rα Blockade during Lymphopenia Depletes Regulatory T-cells and Correlates with Enhanced Immunity in Patients with Glioblastoma

    Get PDF
    Preclinical studies in mice have demonstrated that the prophylactic depletion of immunosuppressive regulatory T-cells (T(Regs)) through targeting the high affinity interleukin-2 (IL-2) receptor (IL-2Rα/CD25) can enhance anti-tumor immunotherapy. However, therapeutic approaches are complicated by the inadvertent inhibition of IL-2Rα expressing anti-tumor effector T-cells.To determine if changes in the cytokine milieu during lymphopenia may engender differential signaling requirements that would enable unarmed anti-IL-2Rα monoclonal antibody (MAbs) to selectively deplete T(Regs) while permitting vaccine-stimulated immune responses.A randomized placebo-controlled pilot study was undertaken to examine the ability of the anti-IL-2Rα MAb daclizumab, given at the time of epidermal growth factor receptor variant III (EGFRvIII) targeted peptide vaccination, to safely and selectively deplete T(Regs) in patients with glioblastoma (GBM) treated with lymphodepleting temozolomide (TMZ).Daclizumab treatment (n = 3) was well-tolerated with no symptoms of autoimmune toxicity and resulted in a significant reduction in the frequency of circulating CD4+Foxp3+ TRegs in comparison to saline controls (n = 3)( p = 0.0464). A significant (p<0.0001) inverse correlation between the frequency of TRegs and the level of EGFRvIII specific humoral responses suggests the depletion of TRegs may be linked to increased vaccine-stimulated humoral immunity. These data suggest this approach deserves further study.ClinicalTrials.gov NCT00626015
    corecore