187 research outputs found
Flux surface shaping effects on tokamak edge turbulence and flows
Shaping of magnetic flux surfaces is found to have a strong impact on
turbulence and transport in tokamak edge plasmas. A series of axisymmetric
equilibria with varying elongation and triangularity, and a divertor
configuration are implemented into a computational gyrofluid turbulence model.
The mechanisms of shaping effects on turbulence and flows are identified.
Transport is mainly reduced by local magnetic shearing and an enhancement of
zonal shear flows induced by elongation and X-point shaping.Comment: 10 pages, 11 figures. Submitted to Physics of Plasma
Radial convection of finite ion temperature, high amplitude plasma blobs
We present results from simulations of seeded blob convection in the
scrape-off-layer of magnetically confined fusion plasmas. We consistently
incorporate high fluctuation amplitude levels and finite Larmor radius (FLR)
effects using a fully nonlinear global gyrofluid model. This is in line with
conditions found in tokamak scrape-off-layers (SOL) regions.
Varying the ion temperature, the initial blob width, and the initial
amplitude, we found an FLR dominated regime where the blob behavior is
significantly different from what is predicted by cold-ion models. The
transition to this regime is very well described by the ratio of the ion
gyroradius to the characteristic gradient scale length of the blob.
We compare the global gyrofluid model with a partly linearized local model.
For low ion temperatures we find that simulations of the global model show more
coherent blobs with an increased cross-field transport compared to blobs
simulated with the local model. The maximal blob amplitude is significantly
higher in the global simulations than in the local ones. When the ion
temperature is comparable to the electron temperature, global blob simulations
show a reduced blob coherence and a decreased cross-field transport in
comparison with local blob simulations
Nonlinear gyrofluid computation of edge localised ideal ballooning modes
Three dimensional electromagnetic gyrofluid simulations of the ideal
ballooning mode blowout scenario for tokamak edge localized modes (ELMs) are
presented. Special emphasis is placed on energetic diagnosis, examining changes
in the growth rate in the linear, overshoot, and decay phases. The saturation
process is energy transfer to self generated edge turbulence which exhibits an
ion temperature gradient (ITG) mode structure. Convergence in the decay phase
is found only if the spectrum reaches the ion gyroradius. The equilibrium is a
self consistent background whose evolution is taken into account. Approximately
two thirds of the total energy in the edge layer is liberated in the blowout.
Parameter dependence with respect to plasma pressure and the ion gyroradius is
studied. Despite the violent nature of the short-lived process, the transition
to nonlinearity is very similar to that found in generic tokamak edge
turbulence.Comment: The following article has been submitted to Physics of Plasmas. After
it is published, it will be found at http://pop.aip.org
Streamline integration as a method for structured grid generation in X-point geometry
We investigate structured grids aligned to the contours of a two-dimensional
flux-function with an X-point (saddle point). Our theoretical analysis finds
that orthogonal grids exist if and only if the Laplacian of the flux-function
vanishes at the X-point. In general, this condition is sufficient for the
existence of a structured aligned grid with an X-point. With the help of
streamline integration we then propose a numerical grid construction algorithm.
In a suitably chosen monitor metric the Laplacian of the flux-function vanishes
at the X-point such that a grid construction is possible.
We study the convergence of the solution to elliptic equations on the
proposed grid. The diverging volume element and cell sizes at the X-point
reduce the convergence rate. As a consequence, the proposed grid should be used
with grid refinement around the X-point in practical applications. We show that
grid refinement in the cells neighboring the X-point restores the expected
convergence rate
The influence of temperature dynamics and dynamic finite ion Larmor radius effects on seeded high amplitude plasma blobs
Thermal effects on the perpendicular convection of seeded pressure blobs in
the scrape-off layer of magnetised fusion plasmas are investigated. Our
numerical study is based on a four field full-F gyrofluid model, which entails
the consistent description of high fluctuation amplitudes and dynamic finite
Larmor radius effects. We find that the maximal radial blob velocity increases
with the square root of the initial pressure perturbation and that a finite
Larmor radius contributes to highly compact blob structures that propagate in
the poloidal direction. An extensive parameter study reveals that a smooth
transition to this compact blob regime occurs when the finite Larmor radius
effect strength, defined by the ratio of the magnetic field aligned component
of the ion diamagnetic to the vorticity, exceeds unity.
The maximal radial blob velocities agree excellently with the inertial velocity
scaling law over more than an order of magnitude. We show that the finite
Larmor radius effect strength affects the poloidal and total particle transport
and present an empirical scaling law for the poloidal and total blob
velocities. Distinctions to the blob behaviour in the isothermal limit with
constant finite Larmor radius effects are highlighted
Stellarator turbulence at electron gyroradius scales
Electromagnetic gyrokinetic simulations of electron- temperature-gradient-driven modes on electron gyroradius scales are performed in the geometry of an advanced stellarator fusion experiment, Wendelstein 7-AS. Based on linear simulations, a critical electron- temperature-gradient formula is established which happens to agree quite well with a previously derived formula for tokamaks in the appropriate limit. Nonlinear simulations are used to study the turbulence and transport characteristics which are dominated by the presence of high- amplitude radially elongated vortices or 'streamers'. The role of Debye shielding effects is also examined
- âŠ