21 research outputs found

    Glutaredoxin is essential for maintenance of brain mitochondrial complex I: studies with MPTP

    Get PDF
    This article does not have an abstract

    Thioltransferase (glutaredoxin) mediates recovery of motor neurons from excitotoxic mitochondrial injury

    Get PDF
    Mitochondrial dysfunction involving electron transport components is implicated in the pathogenesis of several neurodegenerative disorders and is a critical event in excitotoxicity. Excitatory amino acid L-β-N-oxalylamino-L-alanine (L-BOAA), causes progressive corticospinal neurodegeneration in humans. In mice, L-BOAA triggers glutathione loss and protein thiol oxidation that disrupts mitochondrial complex I selectively in motor cortex and lumbosacral cord, the regions affected in humans. We examined the factors regulating postinjury recovery of complex I in CNS regions after a single dose of L-BOAA. The expression of thioltransferase (glutaredoxin), a protein disulfide oxidoreductase regulated through AP1 transcription factor was upregulated within 30 min of L-BOAA administration, providing the first evidence for functional regulation of thioltransferase during restoration of mitochondrial function. Regeneration of complex I activity in motor cortex was concurrent with increase in thioltransferase protein and activity, 1 hr after the excitotoxic insult. Pretreatment with α-lipoic acid, a thiol delivery agent that protects motor neurons from L-BOAA-mediated toxicity prevented the upregulation of thioltransferase and AP1 activation, presumably by maintaining thiol homeostasis. Downregulation of thioltransferase using antisense oligonucleotides prevented the recovery of complex I in motor cortex and exacerbated the mitochondrial dysfunction in lumbosacral cord, providing support for the critical role for thioltransferase in maintenance of mitochondrial function in the CNS

    Down-regulation of glutaredoxin by estrogen receptor antagonist renders female mice susceptible to excitatory amino acid mediated complex I inhibition in CNS

    Get PDF
    β-N-oxalyl-amino-L-alanine, (L-BOAA), an excitatory amino acid, acts as an agonist of the AMPA subtype of glutamate receptors. It inhibits mitochondrial complex I in motor cortex and lumbosacral cord of male mice through oxidation of critical thiol groups, and glutaredoxin, a thiol disulfide oxido-reductase, helps maintain integrity of complex I. Since incidence of neurolathyrism is less common in women, we examined the mechanisms underlying the gender-related effects. Inhibition of complex I activity by L-BOAA was seen in male but not female mice. Pretreatment of female mice with estrogen receptor antagonist ICI 182,780 or tamoxifen sensitizes them to L-BOAA toxicity, indicating that the neuroprotection is mediated by estrogen receptors. L-BOAA triggers glutathione (GSH) loss in male mice but not in female mice, and only a small but significant increase in oxidized glutathione (GSSG) was seen in females. As a consequence, up-regulation of γ-glutamyl cysteinyl synthase (the rate-limiting enzyme in glutathione synthesis) was seen only in male mouse CNS but not in females. Both glutathione reductase and glutaredoxin that reduce oxidized glutathione and protein glutathione mixed disulfides, respectively, were constitutively expressed at higher levels in females. Furthermore, glutaredoxin activity in female mice was down-regulated by estrogen antagonist indicating its regulation by estrogen receptor. The higher constitutive expression of glutathione reductase and glutaredoxin could potentially confer neuroprotection to female mice

    Thioltransferase (glutaredoxin) mediates recovery of motor neurons from excitotoxic mitochondrial injury

    Get PDF
    Mitochondrial dysfunction involving electron transport components is implicated in the pathogenesis of several neurodegenerative disorders and is a critical event in excitotoxicity. Excitatory amino acid L-␤-N-oxalylamino-L-alanine (L-BOAA), causes progressive corticospinal neurodegeneration in humans. In mice, L-BOAA triggers glutathione loss and protein thiol oxidation that disrupts mitochondrial complex I selectively in motor cortex and lumbosacral cord, the regions affected in humans. We examined the factors regulating postinjury recovery of complex I in CNS regions after a single dose of L-BOAA. The expression of thioltransferase (glutaredoxin), a protein disulfide oxidoreductase regulated through AP1 transcription factor was upregulated within 30 min of L-BOAA administration, providing the first evidence for functional regulation of thioltransferase during restoration of mitochondrial function. Regeneration of complex I activity in motor cortex was concurrent with increase in thioltransferase protein and activity, 1 hr after the excitotoxic insult. Pretreatment with ␣-lipoic acid, a thiol delivery agent that protects motor neurons from L-BOAA-mediated toxicity prevented the upregulation of thioltransferase and AP1 activation, presumably by maintaining thiol homeostasis. Downregulation of thioltransferase using antisense oligonucleotides prevented the recovery of complex I in motor cortex and exacerbated the mitochondrial dysfunction in lumbosacral cord, providing support for the critical role for thioltransferase in maintenance of mitochondrial function in the CNS

    Activation of the p75 neurotrophin receptor through conformational rearrangement of disulphide-linked receptor dimers

    Get PDF
    Ligand-mediated dimerization has emerged as a universal mechanism of growth factor receptor activation. Neurotrophins interact with dimers of the p75 neurotrophin receptor (p75(NTR)), but the mechanism of receptor activation has remained elusive. Here, we show that p75(NTR) forms disulphide-linked dimers independently of neurotrophin binding through the highly conserved Cys(257) in its transmembrane domain. Mutation of Cys(257) abolished neurotrophin-dependent receptor activity but did not affect downstream signaling by the p75(NTR)/NgR/Lingo-1 complex in response to MAG, indicating the existence of distinct, ligand-specific activation mechanisms for p75(NTR). FRET experiments revealed a close association of p75(NTR) intracellular domains that was transiently disrupted by conformational changes induced upon NGF binding. Although mutation of Cys(257) did not alter the oligomeric state of p75(NTR), the mutant receptor was no longer able to propagate conformational changes to the cytoplasmic domain upon ligand binding. We propose that neurotrophins activate p75(NTR) by a mechanism involving rearrangement of disulphide-linked receptor subunits

    γ-Glutamyl cysteine synthetase is up-regulated during recovery of brain mitochondrial complex I following neurotoxic insult in mice

    No full text
    β-N-Oxalyl amino-L-alanine (L-BOAA), a naturally occurring excitatory amino acid inhibits mitochondrial complex I activity in motor cortex and lumbar spinal cord of mice through oxidation of critical thiol groups. Glutaredoxin, a protein disulfide oxido-reductase mediates recovery of complex I by regenerating protein thiols utilizing reducing equivalents of glutathione. We have examined the status of γ-glutamyl cysteine synthetase (γ-GCS), the rate limiting enzyme in glutathione synthesis during recovery of complex I function following L-BOAA toxicity. Sustained and maximal up-regulation of γ-GCS was seen in motor cortex which was associated with regeneration of complex I activity. In lumbosacral cord, however, the up-regulation was transient and complex I function did not recover. These studies demonstrate the important role of γ-GCS in mediating the recovery of mitochondrial function following excitotoxic insult and its differential regulation in central nervous system regions

    Protein thiol oxidation by haloperidol results in inhibition of mitochondrial complex I in brain regions: comparison with atypical antipsychotics

    No full text
    Usage of 'typical' but not 'atypical' antipsychotic drugs is associated with severe side effects involving extrapyramidal tract (EPT). Single dose of haloperidol caused selective inhibition of complex I in frontal cortex, striatum and midbrain (41 and 26%, respectively) which was abolished by pretreatment of mice with thiol antioxidants, α-lipoic acid and glutathione isopropyl ester, and reversed, in vitro, by disulfide reductant, dithiothreitol. Prolonged administration of haloperidol to mice resulted in complex I loss in frontal cortex, hippocampus, striatum and midbrain, while chronic dosing with clozapine affected only hippocampus and frontal cortex. Risperidone caused complex I loss in frontal cortex, hippocampus and striatum but not in midbrain from which extrapyramidal tract emanates. Inhibition of the electron transport chain component, complex I by haloperidol is mediated through oxidation of essential thiol groups to disulfides, in vivo. Further, loss of complex I in extrapyramidal brain regions by anti-psychotics correlated with their known propensity to generate side-effects involving extra-pyramidal tract

    Novel Treatments for Melanoma Brain Metastases

    No full text
    Background: The development of brain metastases is common in patients with melanoma and is associated with a poor prognosis. Treating patients with melanoma brain metastases (MBMs) is a major therapeutic challenge. Standard approaches with conventional chemotherapy are disappointing, while surgery and radiotherapy have improved outcomes. Methods: In this article, we discuss the biology of MBMs, briefly outline current treatment approaches, and emphasize novel and emerging therapies for MBMs. Results: The mechanisms that underlie the metastases of melanoma to the brain are unknown; therefore, it is necessary to identify pathways to target MBMs. Most patients with MBMs have short survival times. Recent use of immune-based and targeted therapies has changed the natural history of metastatic melanoma and may be effective for the treatment of patients with MBMs. Conclusions: Developing a better understanding of the factors responsible for MBMs will lead to improved management of this disease. In addition, determining the optimal treatments for MBMs and how they can be optimized or combined with other therapies, along with appropriate patient selection, are challenges for the management of this disease
    corecore